ترغب بنشر مسار تعليمي؟ اضغط هنا

High temperature metamaterial terahertz quantum detector

147   0   0.0 ( 0 )
 نشر من قبل Mathieu Jeannin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a high temperature performance quantum detector of Terahertz (THz) radiation based on three-dimensional metamaterial. The metamaterial unit cell consists of an inductor-capacitor (LC) resonator laterally coupled with antenna elements. The absorbing region, consisting of semiconductor quantum wells is contained in the strongly ultra-subwavelength capacitors of the LC structure. The high radiation loss of the antenna allows strongly increased collection efficiency for the incident THz radiation, while the small effective volume of the LC resonator allows intense light-matter coupling with reduced electrical area. As a result, our detectors operates at much higher temperatures than conventional quantum well detectors demonstrated so far.

قيم البحث

اقرأ أيضاً

Optical spectrometers are the central instruments for exploring the interaction between light and matter. The current pursuit of the field is to design a spectrometer without the need for wavelength multiplexing optics to effectively reduce the compl exity and physical size of the hardware. Based on computational spectroscopic results and combining a broadband-responsive dynamic detector, we successfully demonstrate an optics-free single-detector spectrometer that maps the tunable quantum efficiency of a superconducting nanowire into an ill-conditioned matrix to build a solvable inverse mathematical equation. Such a spectrometer can realize a broadband spectral responsivity ranging from 660 to 1900 nm. The spectral resolution at the telecom is 6 nm, exceeding the energy resolving capacity of existing infrared single-photon detectors. Meanwhile, benefiting from the optics-free setup, precise time-of-flight measurements can be simultaneously achieved. We have demonstrated a spectral LiDAR with 8 spectral channels. This work provides a concise method for building multifunctional spectrometers and paves the way for applying superconducting nanowire detectors in spectroscopy.
106 - C. Yao , H. Mei , Y. Xiao 2020
We found that temperature-dependent infrared spectroscopy measurements (i.e., reflectance or transmittance) using a Fourier-transform spectrometer can have substantial errors, especially for elevated sample temperatures and collection using an object ive lens (e.g., using an infrared microscope). These errors arise as a result of partial detector saturation due to thermal emission from the measured sample reaching the detector, resulting in nonphysical apparent reduction of reflectance or transmittance with increasing sample temperature. Here, we demonstrate that these temperature-dependent errors can be corrected by implementing several levels of optical attenuation that enable convergence testing of the measured reflectance or transmittance as the thermal-emission signal is reduced, or by applying correction factors that can be inferred by looking at the spectral regions where the sample is not expected to have a substantial temperature dependence.
Four-wave-mixing-based quantum cascade laser frequency combs (QCL-FC) are a powerful photonic tool, driving a recent revolution in major molecular fingerprint regions, i.e. mid- and far-infrared domains. Their compact and frequency-agile design, toge ther with their high optical power and spectral purity, promise to deliver an all-in-one source for the most challenging spectroscopic applications. Here, we demonstrate a metrological-grade hybrid dual comb spectrometer, combining the advantages of a THz QCL-FC with the accuracy and absolute frequency referencing provided by a free-standing, optically-rectified THz frequency comb. A proof-of-principle application to methanol molecular transitions is presented. The multi-heterodyne molecular spectra retrieved provide state-of-the-art results in line-center determination, achieving the same precision as currently available molecular databases. The devised setup provides a solid platform for a new generation of THz spectrometers, paving the way to more refined and sophisticated systems exploiting full phase control of QCL-FCs, or Doppler-free spectroscopic schemes.
90 - Mona Jarrahi , Yen-Ju Lin 2019
This commentary is written in response to arXiv:1907.13198. In this article, Zmuidzinas et al. raise questions about the results reported by our group in Nature Astronomy (DOI: 10.1038/s41550-019-0828-6) regarding our experimental methodology and our device performance metrics. As described in this Response, Zmuidzinas et al. have unfortunately missed some basic principles on impedance matching and the physics of photomixers and plasmonics that are at the heart of their categorical conclusions. Here, we correct these misunderstandings and discharge all of their flawed conclusions. Therefore, all of the results and conclusions reported in our Nature Astronomy manuscript remain correct, as before.
Although the detection of light at terahertz (THz) frequencies is important for a large range of applications, current detectors typically have several disadvantages in terms of sensitivity, speed, operating temperature, and spectral range. Here, we use graphene as a photoactive material to overcome all of these limitations in one device. We introduce a novel detector for terahertz radiation that exploits the photothermoelectric (PTE) effect, based on a design that employs a dual-gated, dipolar antenna with a gap of 100 nm. This narrow-gap antenna simultaneously creates a pn junction in a graphene channel located above the antenna and strongly concentrates the incoming radiation at this pn junction, where the photoresponse is created. We demonstrate that this novel detector has an excellent sensitivity, with a noise-equivalent power of 80 pW-per-square-root-Hz at room temperature, a response time below 30 ns (setup-limited), a high dynamic range (linear power dependence over more than 3 orders of magnitude) and broadband operation (measured range 1.8-4.2 THz, antenna-limited), which fulfills a combination that is currently missing in the state-of-the-art detectors. Importantly, on the basis of the agreement we obtained between experiment, analytical model, and numerical simulations, we have reached a solid understanding of how the PTE effect gives rise to a THz-induced photoresponse, which is very valuable for further detector optimization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا