ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics-Informed Neural Network Method for Forward and Backward Advection-Dispersion Equations

109   0   0.0 ( 0 )
 نشر من قبل Qizhi He
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a discretization-free approach based on the physics-informed neural network (PINN) method for solving coupled advection-dispersion and Darcy flow equations with space-dependent hydraulic conductivity. In this approach, the hydraulic conductivity, hydraulic head, and concentration fields are approximated with deep neural networks (DNNs). We assume that the conductivity field is given by its values on a grid, and we use these values to train the conductivity DNN. The head and concentration DNNs are trained by minimizing the residuals of the flow equation and ADE and using the initial and boundary conditions as additional constraints. The PINN method is applied to one- and two-dimensional forward advection-dispersion equations (ADEs), where its performance for various P{e}clet numbers ($Pe$) is compared with the analytical and numerical solutions. We find that the PINN method is accurate with errors of less than 1% and outperforms some conventional discretization-based methods for $Pe$ larger than 100. Next, we demonstrate that the PINN method remains accurate for the backward ADEs, with the relative errors in most cases staying under 5% compared to the reference concentration field. Finally, we show that when available, the concentration measurements can be easily incorporated in the PINN method and significantly improve (by more than 50% in the considered cases) the accuracy of the PINN solution of the backward ADE.



قيم البحث

اقرأ أيضاً

A physics-informed neural network (PINN), which has been recently proposed by Raissi et al [J. Comp. Phys. 378, pp. 686-707 (2019)], is applied to the partial differential equation (PDE) of liquid film flows. The PDE considered is the time evolution of the thickness distribution $h(x,t)$ owing to the Laplace pressure, which involves 4th-order spatial derivative and 4th-order nonlinear term. Even for such a PDE, it is confirmed that the PINN can predict the solutions with sufficient accuracy. Nevertheless, some improvements are needed in training convergence and accuracy of the solutions. The precision of floating-point numbers is a critical issue for the present PDE. When the calculation is executed with a single precision floating-point number, the optimization is terminated due to the loss of significant digits. Calculation of the automatic differentiation (AD) dominates the computational time required for training, and becomes exponentially longer with increasing order of derivatives. By splitting the original 4th-order one-variable PDE into 2nd-order two-variable PDEs, the computational time for each training iteration is greatly reduced. The sampling density of training data also significantly affects training convergence. For the problem considered in this study, mproved convergence was obtained by allowing the sampling density of training data to be greater in earlier time ranges, where the rapid diffusion of the thickness occurs.
Physics-informed neural networks (NN) are an emerging technique to improve spatial resolution and enforce physical consistency of data from physics models or satellite observations. A super-resolution (SR) technique is explored to reconstruct high-re solution images ($4times$) from lower resolution images in an advection-diffusion model of atmospheric pollution plumes. SR performance is generally increased when the advection-diffusion equation constrains the NN in addition to conventional pixel-based constraints. The ability of SR techniques to also reconstruct missing data is investigated by randomly removing image pixels from the simulations and allowing the system to learn the content of missing data. Improvements in S/N of $11%$ are demonstrated when physics equations are included in SR with $40%$ pixel loss. Physics-informed NNs accurately reconstruct corrupted images and generate better results compared to the standard SR approaches.
Near-wall blood flow and wall shear stress (WSS) regulate major forms of cardiovascular disease, yet they are challenging to quantify with high fidelity. Patient-specific computational and experimental measurement of WSS suffers from uncertainty, low resolution, and noise issues. Physics-informed neural networks (PINN) provide a flexible deep learning framework to integrate mathematical equations governing blood flow with measurement data. By leveraging knowledge about the governing equations (herein, Navier-Stokes), PINN overcomes the large data requirement in deep learning. In this study, it was shown how PINN could be used to improve WSS quantification in diseased arterial flows. Specifically, blood flow problems where the inlet and outlet boundary conditions were not known were solved by assimilating very few measurement points. Uncertainty in boundary conditions is a common feature in patient-specific computational fluid dynamics models. It was shown that PINN could use sparse velocity measurements away from the wall to quantify WSS with very high accuracy even without full knowledge of the boundary conditions. Examples in idealized stenosis and aneurysm models were considered demonstrating how partial knowledge about the flow physics could be combined with partial measurements to obtain accurate near-wall blood flow data. The proposed hybrid data-driven and physics-based deep learning framework has high potential in transforming high-fidelity near-wall hemodynamics modeling in cardiovascular disease.
There have been several efforts to Physics-informed neural networks (PINNs) in the solution of the incompressible Navier-Stokes fluid. The loss function in PINNs is a weighted sum of multiple terms, including the mismatch in the observed velocity and pressure data, the boundary and initial constraints, as well as the residuals of the Navier-Stokes equations. In this paper, we observe that the weighted combination of competitive multiple loss functions plays a significant role in training PINNs effectively. We establish Gaussian probabilistic models to define the loss terms, where the noise collection describes the weight parameter for each loss term. We propose a self-adaptive loss function method, which automatically assigns the weights of losses by updating the noise parameters in each epoch based on the maximum likelihood estimation. Subsequently, we employ the self-adaptive loss balanced Physics-informed neural networks (lbPINNs) to solve the incompressible Navier-Stokes equations,hspace{-1pt} includinghspace{-1pt} two-dimensionalhspace{-1pt} steady Kovasznay flow, two-dimensional unsteady cylinder wake, and three-dimensional unsteady Beltrami flow. Our results suggest that the accuracy of PINNs for effectively simulating complex incompressible flows is improved by adaptively appropriate weights in the loss terms. The outstanding adaptability of lbPINNs is not irrelevant to the initialization choice of noise parameters, which illustrates the robustness. The proposed method can also be employed in other problems where PINNs apply besides fluid problems.
Recently, physics-driven deep learning methods have shown particular promise for the prediction of physical fields, especially to reduce the dependency on large amounts of pre-computed training data. In this work, we target the physics-driven learnin g of complex flow fields with high resolutions. We propose the use of emph{Convolutional neural networks} (CNN) based U-net architectures to efficiently represent and reconstruct the input and output fields, respectively. By introducing Navier-Stokes equations and boundary conditions into loss functions, the physics-driven CNN is designed to predict corresponding steady flow fields directly. In particular, this prevents many of the difficulties associated with approaches employing fully connected neural networks. Several numerical experiments are conducted to investigate the behavior of the CNN approach, and the results indicate that a first-order accuracy has been achieved. Specifically for the case of a flow around a cylinder, different flow regimes can be learned and the adhered twin-vortices are predicted correctly. The numerical results also show that the training for multiple cases is accelerated significantly, especially for the difficult cases at low Reynolds numbers, and when limited reference solutions are used as supplementary learning targets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا