ﻻ يوجد ملخص باللغة العربية
This article treats optimal sparse control problems with multiple constraints defined at intermediate points of the time domain. For such problems with intermediate constraints, we first establish a new Pontryagin maximum principle that provides first order necessary conditions for optimality in such problems. Then we announce and employ a new numerical algorithm to arrive at, in a computationally tractable fashion, optimal state-action trajectories from the necessary conditions given by our maximum principle. Several detailed illustrative examples are included.
This paper introduces and studies the optimal control problem with equilibrium constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state and control equilibrium constraint formulated as a complementarity constraint and it can be
In this paper we study an optimal control problem with nonsmooth mixed state and control constraints. In most of the existing results, the necessary optimality condition for optimal control problems with mixed state and control constraints are derive
In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in
In this article, we derive first-order necessary optimality conditions for a constrained optimal control problem formulated in the Wasserstein space of probability measures. To this end, we introduce a new notion of localised metric subdifferential f
This paper considers dynamic networks where vertices and edges represent manifest signals and causal dependencies among the signals, respectively. We address the problem of how to determine if the dynamics of a network can be identified when only par