ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk photovoltaic effect driven by collective excitations in a correlated insulator

225   0   0.0 ( 0 )
 نشر من قبل Tatsuya Kaneko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the bulk photovoltaic effect, which rectifies light into electric current, in a collective quantum state with correlation driven electronic ferroelectricity. We show via explicit real-time dynamical calculations that the effect of the applied electric field on the electronic order parameter leads to a strong enhancement of the bulk photovoltaic effect relative to the values obtained in a conventional insulator. The enhancements include both resonant enhancements at sub-bandgap frequencies, arising from excitation of optically active collective modes, and broad-band enhancements arising from non-resonant deformations of the electronic order. The deformable electronic order parameter produces an injection current contribution to the bulk photovoltaic effect which is entirely absent in a rigid-band approximation to a time-reversal symmetric material. Our findings establish that correlation effects can lead to the bulk photovoltaic effect and demonstrate that the collective behavior of ordered states can yield large nonlinear optical responses.



قيم البحث

اقرأ أيضاً

Solar cells based on conventional semiconductors have low efficiency in converting solar energy into electricity because the excess energy beyond the gap of an incident solar photon is converted into heat by phonons. Here we show by ab initio methods that the presence of strong Coulomb interactions in strongly correlated insulators (SCI) causes the highly photo-excited electron-hole pair to decay fast into multiple electron-hole pairs via impact ionization (II). We show that the II rate in the insulating $M_1$ phase of vanadium dioxide (chosen for this study as it is considered a prototypical SCI) is two orders of magnitude higher than in Si and much higher than the rate of hot electron/hole decay due to phonons. Our results indicate that a rather broad class of materials may be harnessed for an efficient solar-to-electrical energy conversion that has been not considered before.
The theory behind the electrical switching of antiferromagnets is premised on the existence of a well defined broken symmetry state that can be rotated to encode information. A spin glass is in many ways the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. In this study, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe$_{1/3+delta}$NbS$_2$, which is rooted in the electrically-stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. The use of a spin glass collective dynamics to electrically manipulate antiferromagnetic spin textures has never been applied before, opening the field of antiferromagnetic spintronics to many more material platforms with complex magnetic textures.
151 - V.V. Cheianov , I.L. Aleiner , 2011
We introduce the notion of the strongly correlated band insulator (SCI), where the lowest energy excitations are collective modes (excitons) rather than the single particles. We construct controllable 1/N expansion for SCI to describe their observabl es properties. A remarkable example of the SCI is bilayer graphene which is shown to be tunable between the SCI and usual weak coupling regime.
85 - Haowei Xu , Hua Wang , Jian Zhou 2020
Spin current generators are critical components for spintronics-based information processing. In this work, we theoretically and computationally investigate the bulk spin photovoltaic (BSPV) effect for creating DC spin current under light illuminatio n. The only requirement for BPSV is inversion symmetry breaking, thus it applies to a broad range of materials and can be readily integrated with existing semiconductor technologies. The BSPV effect is a cousin of the bulk photovoltaic (BPV) effect, whereby a DC charge current is generated under light. Thanks to the different selection rules on spin and charge currents, a pure spin current can be realized if the system possesses mirror symmetry or inversion-mirror symmetry. The mechanism of BPSV and the role of the electronic relaxation time $tau$ are also elucidated. We apply our theory to several distinct material systems, including transition metal dichalcogenides, anti-ferromagnetic $rm MnBi_2Te_4$, and the surface of topological crystalline insulator cubic $rm SnTe$.
We consider how electron-phonon interaction influences the insulator-metal transitions driven by doping in the strongly correlated system. Using the polaronic version of the generalized tight-binding method, we investigate a multiband two-dimensional model taking into account both Holstein and Su-Schrieffer-Heeger types of electron-lattice contributions. For adiabatic ratio of the hopping parameter and the phonon field energy, different types of band structure evolution are observed in a wide electron-phonon parameter range. We demonstrate the relationship between transition features and such properties of the system as the polaron and bipolaron crossovers, pseudogap behavior of various origin, orbital selectivity, and the redistribution of the spectral weight due to the electron-phonon interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا