ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable Strongly Correlated Band Insulator

158   0   0.0 ( 0 )
 نشر من قبل Igor Aleiner
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notion of the strongly correlated band insulator (SCI), where the lowest energy excitations are collective modes (excitons) rather than the single particles. We construct controllable 1/N expansion for SCI to describe their observables properties. A remarkable example of the SCI is bilayer graphene which is shown to be tunable between the SCI and usual weak coupling regime.



قيم البحث

اقرأ أيضاً

156 - N. Xu , P. K. Biswas , J. H. Dil 2014
The concept of a topological Kondo insulator (TKI) has been brought forward as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to the strong spin-orbit coupling [1-3]. In contrast to other three-dimensional (3D) topological insulators (e.g. Bi2Se3), a TKI is truly insulating in the bulk [4]. Furthermore, strong electron correlations are present in the system, which may interact with the novel topological phase. Applying spin- and angle-resolved photoemission spectroscopy (SARPES) to the Kondo insulator SmB6, a promising TKI candidate, we reveal that the surface states of SmB6 are spin polarized, and the spin is locked to the crystal momentum. Counter-propagating states (i.e. at k and -k) have opposite spin polarizations protected by time-reversal symmetry. Together with the odd number of Fermi surfaces of surface states between the 4 time-reversal invariant momenta in the surface Brillouin zone [5], these findings prove, for the first time, that SmB6 can host non-trivial topological surface states in a full insulating gap in the bulk stemming from the Kondo effect. Hence our experimental results establish that SmB6 is the first realization of a 3D TKI. It can also serve as an ideal platform for the systematic study of the interplay between novel topological quantum states with emergent effects and competing order induced by strongly correlated electrons.
Excitonic insulators (EI) arise from the formation of bound electron-hole pairs (excitons) in semiconductors and provide a solid-state platform for quantum many-boson physics. Strong exciton-exciton repulsion is expected to stabilize condensed superf luid and crystalline phases by suppressing both density and phase fluctuations. Although spectroscopic signatures of EIs have been reported, conclusive evidence for strongly correlated EI states has remained elusive. Here, we demonstrate a strongly correlated spatially indirect two-dimensional (2D) EI ground state formed in transition metal dichalcogenide (TMD) semiconductor double layers. An equilibrium interlayer exciton fluid is formed when the bias voltage applied between the two electrically isolated TMD layers, is tuned to a range that populates bound electron-hole pairs, but not free electrons or holes. Capacitance measurements show that the fluid is exciton-compressible but charge-incompressible - direct thermodynamic evidence of the EI. The fluid is also strongly correlated with a dimensionless exciton coupling constant exceeding 10. We further construct an exciton phase diagram that reveals both the Mott transition and interaction-stabilized quasi-condensation. Our experiment paves the path for realizing the exotic quantum phases of excitons, as well as multi-terminal exciton circuitry for applications.
We present a novel route for attaining unconventional superconductivity (SC) in a strongly correlated system without doping. In a simple model of a correlated band insulator (BI) at half-filling we demonstrate, based on a generalization of the projec ted wavefunctions method, that SC emerges when e-e interactions and the bare band-gap are both much larger than the kinetic energy, provided the system has sufficient frustration against the magnetic order. As the interactions are tuned, SC appears sandwiched between the correlated BI followed by a paramagnetic metal on one side, and a ferrimagnetic metal, antiferromagnetic (AF) half-metal, and AF Mott insulator phases on the other side.
Strong spin-orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin-orbit and strong electron-electron interactions is just beginning to be understood. Central to this eme rging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a nontrivial state with a single point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behavior is predicted, for which we observe some evidence. Our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semi-metal, and quantum spin and anomalous Hall states.
94 - Gang Chen 2020
We point out the generic competition between the Hunds coupling and the spin-orbit coupling in correlated materials, and this competition leads to an electronic dilemma between the Hunds metal and the relativistic insulators. Hunds metals refer to th e fate of the would-be insulators where the Hunds coupling suppresses the correlation and drives the systems into correlated metals. Relativistic Mott insulators refer to the fate of the would-be metals where the relativistic spin-orbit coupling enhances the correlation and drives the systems into Mott insulators. These contradictory trends are naturally present in many correlated materials. We study the competition between Hunds coupling and spin-orbit coupling in correlated materials and explore the interplay and the balance from these two contradictory trends. The system can become a spin-orbit-coupled Hunds metal or a Hunds assisted relativistic Mott insulator. Our observation could find a broad application and relevance to many correlated materials with multiple orbitals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا