ترغب بنشر مسار تعليمي؟ اضغط هنا

New methods for ALMA angular-scale based observation scheduling, quality assessment, and beam shaping

50   0   0.0 ( 0 )
 نشر من قبل Dirk Petry
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Up to now, the completion of an ALMA interferometric observation is determined based on the achievement of a given shape and size of the synthesized beam and the noise RMS in the representative spectral range. This approach with respect to the angular resolution investigates mainly the longest baselines of the interferometer and says little about the sensitivity at larger angular scales. We are exploring the ideas of angular-scale-based scheduling and quality assessment, and of angular-scale-based visibility weighting as a step towards optimising both observation efficiency and image fidelity. This approach carries the imaging quality assurance into the visibility space where interferometers record the data, and therefore simplifies many aspects of the procedure. Similarly, during scheduling such detailed assessment of the expected imaging properties helps optimising the scheduling process. The methodology is applicable to all radio interferometers with more than ca. 10 antennas.

قيم البحث

اقرأ أيضاً

231 - Fan Zhang , David R. Bull 2021
This paper describes a quality assessment model for perceptual video compression applications (PVM), which stimulates visual masking and distortion-artefact perception using an adaptive combination of noticeable distortions and blurring artefacts. Th e method shows significant improvement over existing quality metrics based on the VQEG database, and provides compatibility with in-loop rate-quality optimisation for next generation video codecs due to its latency and complexity attributes. Performance comparison are validated against a range of different distortion types.
Agile satellites with advanced attitude maneuvering capability are the new generation of Earth observation satellites (EOSs). The continuous improvement in satellite technology and decrease in launch cost have boosted the development of agile EOSs (A EOSs). To efficiently employ the increasing orbiting AEOSs, the AEOS scheduling problem (AEOSSP) aiming to maximize the entire observation profit while satisfying all complex operational constraints, has received much attention over the past 20 years. The objectives of this paper are thus to summarize current research on AEOSSP, identify main accomplishments and highlight potential future research directions. To this end, general definitions of AEOSSP with operational constraints are described initially, followed by its three typical variations including different definitions of observation profit, multi-objective function and autonomous model. A detailed literature review from 1997 up to 2019 is then presented in line with four different solution methods, i.e., exact method, heuristic, metaheuristic and machine learning. Finally, we discuss a number of topics worth pursuing in the future.
Direct exoplanet spectroscopy aims to measure the spectrum of an exoplanet while simultaneously minimizing the light collected from its host star. Isolating the planet light from the starlight improves the signal-to-noise ratio (S/N) per spectral cha nnel when noise due to the star dominates, which may enable new studies of the exoplanet atmosphere with unprecedented detail at high spectral resolution (>30,000). However, the optimal instrument design depends on the flux level from the planet and star compared to the noise due to other sources, such as detector noise and thermal background. Here we present the design, fabrication, and laboratory demonstration of specially-designed optics to improve the S/N in two potential regimes in direct exoplanet spectroscopy with adaptive optics instruments. The first is a pair of beam-shaping lenses that increase the planet signal by improving the coupling efficiency into a single-mode fiber at the known position of the planet. The second is a grayscale apodizer that reduces the diffracted starlight for planets at small angular separations from their host star. The former especially increases S/N when dominated by detector noise or thermal background, while the latter helps reduce stellar noise. We show good agreement between the theoretical and experimental point spread functions in each case and predict the exposure time reduction ($sim 33%$) that each set of optics provides in simulated observations of 51 Eridani b using the Keck Planet Imager and Characterizer instrument at W.M. Keck Observatory.
126 - Guohua Wu , Qizhang Luo , Xiao Du 2020
Satellite observation scheduling plays a significant role in improving the efficiency of Earth observation systems. To solve the large-scale multi-satellite observation scheduling problem, this paper proposes an ensemble of meta-heuristic and exact a lgorithm based on a divide-and-conquer framework (EHE-DCF), including a task allocation phase and a task scheduling phase. In the task allocation phase, each task is allocated to a proper orbit based on a meta-heuristic incorporated with a probabilistic selection and a tabu mechanism derived from ant colony optimization and tabu search respectively. In the task scheduling phase, we construct a task scheduling model for every single orbit, and use an exact method (i.e., branch and bound, B&B) to solve this model. The task allocation and task scheduling phases are performed iteratively to obtain a promising solution. To validate the performance of EHE-DCF, we compare it with B&B, three divide-and-conquer based meta-heuristics, and a state-of-the-art meta-heuristic. Experimental results show that EHE-DCF can obtain higher scheduling profits and complete more tasks compared with existing algorithms. EHE-DCF is especially efficient for large-scale satellite observation scheduling problems.
The ALMA Observation Support Tool (OST) is an ALMA simulator which is interacted with solely via a standard web browser. It is aimed at users who may or may not be experts in interferometry, or those that do not wish to familarise themselves with the simulation components of a data reduction package. It has been designed to offer full imaging simulation capability for an arbitrary ALMA observation while maintaining the accessibility of other online tools such as the ALMA Sensitivity Calculator. Simulation jobs are defined by selecting and entering options on a standard web form. The user can specify the standard parameters that would need to be considered for an ALMA observation (e.g. pointing direction, frequency set up, duration), and there is also the option to upload arbitrary sky models in FITS format. Once submitted, jobs are sequentially processed by a remote server running a CASA-based back-end system. The user is notified by email when the job is complete, and directed to a standard web page which contains the results of the simulation and a range of downloadable data products. The system is currently hosted by the UK ALMA Regional Centre, and can be accessed by directing a web browser to http://almaost.jb.man.ac.uk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا