ﻻ يوجد ملخص باللغة العربية
Satellite observation scheduling plays a significant role in improving the efficiency of Earth observation systems. To solve the large-scale multi-satellite observation scheduling problem, this paper proposes an ensemble of meta-heuristic and exact algorithm based on a divide-and-conquer framework (EHE-DCF), including a task allocation phase and a task scheduling phase. In the task allocation phase, each task is allocated to a proper orbit based on a meta-heuristic incorporated with a probabilistic selection and a tabu mechanism derived from ant colony optimization and tabu search respectively. In the task scheduling phase, we construct a task scheduling model for every single orbit, and use an exact method (i.e., branch and bound, B&B) to solve this model. The task allocation and task scheduling phases are performed iteratively to obtain a promising solution. To validate the performance of EHE-DCF, we compare it with B&B, three divide-and-conquer based meta-heuristics, and a state-of-the-art meta-heuristic. Experimental results show that EHE-DCF can obtain higher scheduling profits and complete more tasks compared with existing algorithms. EHE-DCF is especially efficient for large-scale satellite observation scheduling problems.
The information-based optimal subdata selection (IBOSS) is a computationally efficient method to select informative data points from large data sets through processing full data by columns. However, when the volume of a data set is too large to be pr
Advantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms
We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are
Spectral clustering is one of the most popular clustering methods. However, how to balance the efficiency and effectiveness of the large-scale spectral clustering with limited computing resources has not been properly solved for a long time. In this
This paper was prompted by numerical experiments we performed, in which algorithms already available in the literature (DVS-BDDM) yielded accelerations (or speedups) many times larger (more than seventy in some examples already treated, but probably