ترغب بنشر مسار تعليمي؟ اضغط هنا

Teach me to segment with mixed supervision: Confident students become masters

70   0   0.0 ( 0 )
 نشر من قبل Jose Dolz
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep segmentation neural networks require large training datasets with pixel-wise segmentations, which are expensive to obtain in practice. Mixed supervision could mitigate this difficulty, with a small fraction of the data containing complete pixel-wise annotations, while the rest being less supervised, e.g., only a handful of pixels are labeled. In this work, we propose a dual-branch architecture, where the upper branch (teacher) receives strong annotations, while the bottom one (student) is driven by limited supervision and guided by the upper branch. In conjunction with a standard cross-entropy over the labeled pixels, our novel formulation integrates two important terms: (i) a Shannon entropy loss defined over the less-supervised images, which encourages confident student predictions at the bottom branch; and (ii) a Kullback-Leibler (KL) divergence, which transfers the knowledge from the predictions generated by the strongly supervised branch to the less-supervised branch, and guides the entropy (student-confidence) term to avoid trivial solutions. Very interestingly, we show that the synergy between the entropy and KL divergence yields substantial improvements in performances. Furthermore, we discuss an interesting link between Shannon-entropy minimization and standard pseudo-mask generation and argue that the former should be preferred over the latter for leveraging information from unlabeled pixels. Through a series of quantitative and qualitative experiments, we show the effectiveness of the proposed formulation in segmenting the left-ventricle endocardium in MRI images. We demonstrate that our method significantly outperforms other strategies to tackle semantic segmentation within a mixed-supervision framework. More interestingly, and in line with recent observations in classification, we show that the branch trained with reduced supervision largely outperforms the teacher.

قيم البحث

اقرأ أيضاً

Aquaculture industries rely on the availability of accurate fish body measurements, e.g., length, width and mass. Manual methods that rely on physical tools like rulers are time and labour intensive. Leading automatic approaches rely on fully-supervi sed segmentation models to acquire these measurements but these require collecting per-pixel labels -- also time consuming and laborious: i.e., it can take up to two minutes per fish to generate accurate segmentation labels, almost always requiring at least some manual intervention. We propose an automatic segmentation model efficiently trained on images labeled with only point-level supervision, where each fish is annotated with a single click. This labeling process requires significantly less manual intervention, averaging roughly one second per fish. Our approach uses a fully convolutional neural network with one branch that outputs per-pixel scores and another that outputs an affinity matrix. We aggregate these two outputs using a random walk to obtain the final, refined per-pixel segmentation output. We train the entire model end-to-end with an LCFCN loss, resulting in our A-LCFCN method. We validate our model on the DeepFish dataset, which contains many fish habitats from the north-eastern Australian region. Our experimental results confirm that A-LCFCN outperforms a fully-supervised segmentation model at fixed annotation budget. Moreover, we show that A-LCFCN achieves better segmentation results than LCFCN and a standard baseline. We have released the code at url{https://github.com/IssamLaradji/affinity_lcfcn}.
Human object interaction (HOI) detection is an important task in image understanding and reasoning. It is in a form of HOI triplet <human; verb; object>, requiring bounding boxes for human and object, and action between them for the task completion. In other words, this task requires strong supervision for training that is however hard to procure. A natural solution to overcome this is to pursue weakly-supervised learning, where we only know the presence of certain HOI triplets in images but their exact location is unknown. Most weakly-supervised learning methods do not make provision for leveraging data with strong supervision, when they are available; and indeed a naive combination of this two paradigms in HOI detection fails to make contributions to each other. In this regard we propose a mixed-supervised HOI detection pipeline: thanks to a specific design of momentum-independent learning that learns seamlessly across these two types of supervision. Moreover, in light of the annotation insufficiency in mixed supervision, we introduce an HOI element swapping technique to synthesize diverse and hard negatives across images and improve the robustness of the model. Our method is evaluated on the challenging HICO-DET dataset. It performs close to or even better than many fully-supervised methods by using a mixed amount of strong and weak annotations; furthermore, it outperforms representative state of the art weakly and fully-supervised methods under the same supervision.
Science students must deal with the errors inherent to all physical measurements and be conscious of the need to expressvthem as a best estimate and a range of uncertainty. Errors are routinely classified as statistical or systematic. Although statis tical errors are usually dealt with in the first years of science studies, the typical approaches are based on manually performing repetitive observations. Our work proposes a set of laboratory experiments to teach error and uncertainties based on data recorded with the sensors available in many mobile devices. The main aspects addressed are the physical meaning of the mean value and standard deviation, and the interpretation of histograms and distributions. The normality of the fluctuations is analyzed qualitatively comparing histograms with normal curves and quantitatively comparing the number of observations in intervals to the number expected according to a normal distribution and also performing a Chi-squared test. We show that the distribution usually follows a normal distribution, however, when the sensor is placed on top of a loudspeaker playing a pure tone significant differences with a normal distribution are observed. As applications to every day situations we discuss the intensity of the fluctuations in different situations, such as placing the device on a table or holding it with the hands in different ways. Other activities are focused on the smoothness of a road quantified in terms of the fluctuations registered by the accelerometer. The present proposal contributes to gaining a deep insight into modern technologies and statistical errors and, finally, motivating and encouraging engineering and science students.
Weak supervision learning on classification labels has demonstrated high performance in various tasks. When a few pixel-level fine annotations are also affordable, it is natural to leverage both of the pixel-level (e.g., segmentation) and image level (e.g., classification) annotation to further improve the performance. In computational pathology, however, such weak or mixed supervision learning is still a challenging task, since the high resolution of whole slide images makes it unattainable to perform end-to-end training of classification models. An alternative approach is to analyze such data by patch-base model training, i.e., using self-supervised learning to generate pixel-level pseudo labels for patches. However, such methods usually have model drifting issues, i.e., hard to converge, because the noise accumulates during the self-training process. To handle those problems, we propose a mixed supervision learning framework for super high-resolution images to effectively utilize their various labels (e.g., sufficient image-level coarse annotations and a few pixel-level fine labels). During the patch training stage, this framework can make use of coarse image-level labels to refine self-supervised learning and generate high-quality pixel-level pseudo labels. A comprehensive strategy is proposed to suppress pixel-level false positives and false negatives. Three real-world datasets with very large number of images (i.e., more than 10,000 whole slide images) and various types of labels are used to evaluate the effectiveness of mixed supervision learning. We reduced the false positive rate by around one third compared to state of the art while retaining 100% sensitivity, in the task of image-level classification.
Knowledge Distillation (KD) is a widely used technique to transfer knowledge from pre-trained teacher models to (usually more lightweight) student models. However, in certain situations, this technique is more of a curse than a blessing. For instance , KD poses a potential risk of exposing intellectual properties (IPs): even if a trained machine learning model is released in black boxes (e.g., as executable software or APIs without open-sourcing code), it can still be replicated by KD through imitating input-output behaviors. To prevent this unwanted effect of KD, this paper introduces and investigates a concept called Nasty Teacher: a specially trained teacher network that yields nearly the same performance as a normal one, but would significantly degrade the performance of student models learned by imitating it. We propose a simple yet effective algorithm to build the nasty teacher, called self-undermining knowledge distillation. Specifically, we aim to maximize the difference between the output of the nasty teacher and a normal pre-trained network. Extensive experiments on several datasets demonstrate that our method is effective on both standard KD and data-free KD, providing the desirable KD-immunity to model owners for the first time. We hope our preliminary study can draw more awareness and interest in this new practical problem of both social and legal importance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا