ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical absorption sensing with dual-spectrum silicon LEDs in SOI-CMOS technology

47   0   0.0 ( 0 )
 نشر من قبل Satadal Dutta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon p-n junction diodes emit low-intensity, broad-spectrum light near 1120 nm in forward bias and between 400-900 nm in reverse bias (avalanche). For the first time, we experimentally achieve optical absorption sensing of pigment in solution with silicon micro LEDs designed in a standard silicon-on-insulator CMOS technology. By driving a single LED in both forward and avalanche modes of operation, we steer its electroluminescent spectrum between visible and near-infrared (NIR). We then characterize the vertical optical transmission of both visible and NIR light from the LED through the same micro-droplet specimen to a vertically mounted discrete silicon photodiode. The effective absorption coefficient of carmine solution in glycerol at varying concentrations were extracted from the color ratio in optical coupling. By computing the LED-specific molar absorption coefficient of carmine, we estimate the concentration (0.040 mo/L) and validate the same with a commercial spectrophotometer (0.030 mol/L ). With a maximum observed sensitivity of 1260 /cm /mol L, the sensor is a significant step forward towards low-cost CMOS-integrated optical sensors with silicon LED as the light source intended for biochemical analyses in food sector and plant/human health.

قيم البحث

اقرأ أيضاً

In this article we explore the requirements for enabling high quality optically detected magnetic resonance (ODMR) spectroscopy in a conventional gradient force optical tweezers using nanodiamonds containing nitrogen-vacancy (NV$^{-}$) centres. We fi nd that modulation of the infrared (1064 nm) trapping laser during spectroscopic measurements substantially improves the ODMR contrast compared with continuous wave trapping. The work is significant as it allows trapping and quantum sensing protocols to be performed in conditions where signal contrast is substantially reduced. We demonstrate the utility of the technique by resolving NV$^{-}$ spin projections within the ODMR spectrum. Manipulating the orientation of the nanodiamond via the trapping laser polarisation, we observe changes in spectral features. Theoretical modelling then allows us to infer the crystallographic orientation of the NV$^{-}$. This is an essential capability for future magnetic sensing applications of optically trapped nanodiamonds.
642 - Philippe Guay 2019
The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables usin g interferogram self-correction to fully retrieve the coherence of a dual-comb beat note between two independent fiber lasers. This approach allows to forego the $f - 2f$ self-referencing of both combs, which is a significant simplification. Broadband near-infrared methane spectroscopy has been conducted as a demonstration of the simplified systems preserved performance.
The impact of photodetector nonlinearity on dual-comb spectrometers is described and compared to that of Michelson-based Fourier transform spectrometers (FTS). The optical sampling occurring in the dual-comb approach, being the key difference with FT S, causes optical aliasing of the nonlinear spectral artifacts. Measured linear and nonlinear interferograms are presented to validate the model. Absorption lines of H$^{13}$CN are provided to understand the impact of nonlinearity on spectroscopic measurements.
Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a rea l-time, high-resolution analytical spectroscopy tool for a range of applications. However, the stringent requirement on the coherence between comb lines from two separate lasers and the sophisticated control system to achieve that have confined the technology to the top metrology laboratories. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using just one dual-wavelength, passively mode-locked fiber laser. Dual-comb pulses with a repetition-frequency difference determined by the intracavity dispersion are shown to be sufficiently stable against common-mode cavity drifts and noises. As sufficiently low relative linewidth is maintained between two sets of comb lines, capability to resolve RF beat notes between comb teeth and picometer-wide optical spectral features is demonstrated using a simple data acquisition and processing system in an all-fiber setup. Possibility to use energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable the realization of low-cost dual-comb spectroscopy systems affordable to more applications.
We successfully demonstrated experimentally the electrical-field-mediated control of the spin of electrons confined in an SOI Quantum Dot (QD) device fabricated with a standard CMOS process flow. Furthermore, we show that the Back-Gate control in SOI devices enables switching a quantum bit (qubit) between an electrically-addressable, yet charge noise-sensitive configuration, and a protected configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا