ترغب بنشر مسار تعليمي؟ اضغط هنا

Nature of bright C-complex asteroids

71   0   0.0 ( 0 )
 نشر من قبل Sunao Hasegawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most C-complex asteroids have albedo values less than 0.1, but there are some high-albedo (bright) C-complex asteroids with albedo values exceeding 0.1. To reveal the nature and origin of bright C-complex asteroids, we conducted spectroscopic observations of the asteroids in visible and near-infrared wavelength regions. As a result, the bright B-, C-, and Ch-type (Bus) asteroids, which are subclasses of the Bus C-complex, are classified as DeMeo C-type asteroids with concave curvature, B-, Xn-, and K-type asteroids. Analogue meteorites and material (CV/CK chondrites, enstatite chondrites/achondrites, and salts) associated with these spectral types of asteroids are thought to be composed of minerals and material exposed to high temperatures. A comparison of the results obtained in this study with the SDSS photometric data suggests that salts may have occurred in the parent bodies of 24 Themis and 10 Hygiea, as well as 2 Pallas. The bright C-complex asteroids in other C-complex families were likely caused by impact heating. Bright C-complex asteroids that do not belong to any families are likely to be impact metamorphosed carbonaceous chondrites, CV/CK chondrites, or enstatite chondrites/achondrites.

قيم البحث

اقرأ أيضاً

The Trojan asteroids provide a unique perspective on the history of Solar System. As a large population of small bodies, they record important gravitational interactions and dynamical evolution of the Solar System. In the past decade, significant adv ances have been made in understanding physical properties, and there has been a revolution in thinking about the origin of Trojans. The ice and organics generally presumed to be a significant part of Trojan compositions have yet to be detected directly, though low density of the binary system Patroclus (and possibly low density of the binary/moonlet system Hektor) is consistent with an interior ice component. By contrast, fine-grained silicates that appear to be similar to cometary silicates in composition have been detected, and a color bimodality may indicate distinct compositional groups among the Trojans. Whereas Trojans had traditionally been thought to have formed near 5 AU, a new paradigm has developed in which the Trojans formed in the proto-Kuiper Belt, and they were scattered inward and captured in the Trojan swarms as a result of resonant interactions of the giant planets. Whereas the orbital and population distributions of current Trojans are consistent with this origin scenario, there are significant differences between current physical properties of Trojans and those of Kuiper Belt objects. These differences may be indicative of surface modification due to the inward migration of objects that became the Trojans, but understanding of appropriate modification mechanisms is poor and would benefit from additional laboratory studies. Many open questions remain, and the future promises significant strides in our understanding of Trojans. The time is ripe for a spacecraft mission to the Trojans, to turn these objects into geologic worlds that can be studied in detail to unravel their complex history.
88 - S. Potin , P. Beck , F. Usui 2020
Here we report a comparison between reflectance spectroscopy of meteorites under asteroidal environment (high vacuum and temperature) and Main Belt and Near Earth Asteroids spectra. Focusing on the OH absorption feature around 3{mu}m, we show that th e asteroidal environment induces a reduction of depth and width of the band, as well as a shift of the reflectance minimum. We then decompose the OH feature into several components with a new model using Exponentially Modified Gaussians. Unlike previous studies, we confirme the link between these components, the aqueous alteration history and the amount of water molecules inside of the sample, using the shape of this spectral feature only. We then apply this deconvolution model to asteroids spectra which were obtained with a space-borne telescope and two space probes, and find a strong similarity with the components detected on meteorites, and among asteroids from a same type. Based on the conclusions drawn from our meteorites experiment, we suggest to use the 3-{mu}m band as a tracer of the alteration history of the small bodies. Using the 3-{mu}m band only, we show that Ryugu has been heavily altered by water, which is consistent with its parent body being covered with water ice, then went through a high temperature sequence, over 400{deg}C. We also point out that the 3-{mu}m band of Bennu shows signs of its newly discovered surface activity.
122 - Pierre Beck , Olivier Poch 2021
The Sloan Digital Sky Survey provides colors for more than 100 000 moving objects, among which around 10 000 have albedos determined. Here we combined colors and albedo in order to perform a cluster analysis on the small bodies population, and identi fy a C-cluster, a group of asteroid related to C-type as defined in earlier work. Members of this C-cluster are in fair agreement with the color boundaries of B and C-type defined in DeMeo and Carry (2013). We then compare colors of C-cluster asteroids to those of carbonaceous chondrites powders, while taking into account the effect of phase angle. We show that only CM chondrites have colors in the range of C-cluster asteroids, CO, CR and CV chondrites being significantly redder. Also, CM chondrites powders are on average slightly redder than the average C-cluster. The colors of C-cluster members are further investigated by looking at color variations as a function of asteroid diameter. We observe that the visible slope becomes bluer with decreasing asteroids diameter, and a transition seems to be present around 20 km. We discuss the origin of this variation and, if not related to a bias in the dataset - analysis, we conclude that it is related to the surface texture of the objects, smaller objects being covered by rocks, while larger objects are covered by a particulate surface. The blueing is interpreted by an increased contribution of the first reflection in the case of rock-dominated surfaces, which can scatter light in a Rayleigh-like manner. We do not have unambiguous evidence of space weathering within the C-cluster based on this analysis, however the generally bluer nature of C-cluster objects compared to CM chondrites could be to some extent related to space weathering.
Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the sur faces of some of these asteroids including Ceres. Here we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.
Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope o f an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual rejuvenation of asteroid surfaces by impacts does not allow bodies with the ordinary chondrite composition to be masked among S asteroids. Spectroscopic analysis, using relatively invariant spectral parameters, such as band centers and band area ratios, can determine whether the surface of an S asteroid has chondritic composition or not. Differences in the environment of the main asteroid belt versus that at 1 AU, and the physical difference between the Moon and main belt asteroids (i.e., size) can account for the lack of lunar-type weathering on main belt asteroids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا