ترغب بنشر مسار تعليمي؟ اضغط هنا

Slowly rotating black holes in Einsteinian cubic gravity

103   0   0.0 ( 0 )
 نشر من قبل Robie Hennigar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct slowly rotating black-hole solutions of Einsteinian cubic gravity (ECG) in four dimensions with flat and AdS asymptotes. At leading order in the rotation parameter, the only modification with respect to the static case is the appearance of a non-vanishing $g_{tphi}$ component. Similarly to the static case, the order of the equation determining such component can be reduced twice, giving rise to a second-order differential equation which can be easily solved numerically as a function of the ECG coupling. We study how various physical properties of the solutions are modified with respect to the Einstein gravity case, including its angular velocity, photon sphere, photon rings, shadow, and innermost stable circular orbits (in the case of timelike geodesics).



قيم البحث

اقرأ أيضاً

The detection of gravitational waves from compact binary mergers by the LIGO/Virgo collaboration has, for the first time, allowed us to test relativistic gravity in its strong, dynamical and nonlinear regime, thus opening a new arena to confront gene ral relativity (and modifications thereof) against observations. We consider a theory which modifies general relativity by introducing a scalar field coupled to a parity-violating curvature term known as dynamical Chern-Simons gravity. In this theory, spinning black holes are different from their general relativistic counterparts and can thus serve as probes to this theory. We study linear gravito-scalar perturbations of black holes in dynamical Chern-Simons gravity at leading-order in spin and (i) obtain the perturbed field equations describing the evolution of the perturbed gravitational and scalar fields, (ii) numerically solve these equations by direct integration to calculate the quasinormal mode frequencies for the dominant and higher multipoles and tabulate them, (iii) find strong evidence that these rotating black holes are linearly stable, and (iv) present general fitting functions for different multipoles for gravitational and scalar quasinormal mode frequencies in terms of spin and Chern-Simons coupling parameter. Our results can be used to validate the ringdown of small-spin remnants of numerical relativity simulations of black hole binaries in dynamical Chern-Simons gravity and pave the way towards future tests of this theory with gravitational wave ringdown observations
144 - Maria Okounkova 2019
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order -reduced Einstein dilaton Gauss-Bonnet gravity (EDGB), a higher curvature beyond-GR theory with motivations in string theory. The stability of single, rotating black holes in EDGB is unknown, but is a necessary condition for being able to simulate binary black hole systems (especially the early-inspiral and late ringdown stages) in EDGB. We thus investigate the stability of rotating black holes in order-reduced EDGB. We evolve the leading-order EDGB scalar field and EDGB spacetime metric deformation on a rotating black hole background, for a variety of spins. We find that the EDGB metric deformation exhibits linear growth, but that this level of growth exponentially converges to zero with numerical resolution. Thus, we conclude that rotating black holes in EDGB are numerically stable to leading-order, thus satisfying our necessary condition for performing binary black hole simulations in EDGB.
103 - Manu Srivastava 2021
Using gravitational wave observations to search for deviations from general relativity in the strong-gravity regime has become an important research direction. Chern Simons (CS) gravity is one of the most frequently studied parity-violating models of strong gravity. It is known that the Kerr black-hole is not a solution for CS gravity. At the same time, the only rotating solution available in the literature for dynamical CS (dCS) gravity is the slow-rotating case most accurately known to quadratic order in spin. In this work, for the slow-rotating case (accurate to first order in spin), we derive the linear perturbation equations governing the metric and the dCS field accurate to linear order in spin and quadratic order in the CS coupling parameter ($alpha$) and obtain the quasi-normal mode (QNM) frequencies. After confirming the recent results of Wagle et al. (2021), we find an additional contribution to the eigenfrequency correction at the leading perturbative order of $alpha^2$. Unlike Wagle et al., we also find corrections to frequencies in the polar sector. We compute these extra corrections by evaluating the expectation values of the perturbative potential on unperturbed QNM wavefunctions along a contour deformed into the complex-$r$ plane. For $alpha=0.1 M^2$, we obtain the ratio of the imaginary parts of the dCS correction to the GR correction in the first QNM frequency (in the polar sector) to be $0.263$ implying significant change. For the $(2,2)-$mode, the dCS corrections make the imaginary part of the first QNM of the fundamental mode less negative, thereby decreasing the decay rate. Our results, along with future gravitational wave observations, can be used to test for dCS gravity and further constrain the CS coupling parameters. [abridged]
We show that, independently of the scalar field potential and of specific asymptotic properties of the spacetime (asymptotically flat, de Sitter or anti-de Sitter), any static, spherically symmetric or planar, black hole or soliton solution of the Ei nstein theory minimally coupled to a real scalar field with a general potential is mode stable under linear odd-parity perturbations. To this end, we generalize the Regge-Wheeler equation for a generic self-interacting scalar field, and show that the potential of the relevant Schrodinger operator can be mapped, by the so-called S-deformation, to a semi-positively defined potential. With these results at hand we study the existence of slowly rotating configurations. The frame dragging effect is compared with the Kerr black hole.
We investigate static and rotating charged spherically symmetric solutions in the framework of $f({cal R})$ gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromag netic Lagrangian, and using as an example the square-root $f({cal R})$ correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit and one that arises purely from the gravitational modification. The novel black hole solution has a true central singularity which is hidden behind a horizon, however for particular parameter regions it becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا