ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for Measuring the Hubble Constant with Neutron-Star-Black-Hole Mergers

247   0   0.0 ( 0 )
 نشر من قبل Stephen Feeney
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational wave (GW) and electromagnetic (EM) observations of neutron-star-black-hole (NSBH) mergers can provide precise local measurements of the Hubble constant ($H_0$), ideal for resolving the current $H_0$ tension. We perform end-to-end analyses of realistic populations of simulated NSBHs, incorporating both GW and EM selection for the first time. We show that NSBHs could achieve unbiased 1.5-2.4% precision $H_0$ estimates by 2030. The achievable precision is strongly affected by the details of spin precession and tidal disruption, highlighting the need for improved modeling of NSBH mergers.

قيم البحث

اقرأ أيضاً

The detection of GW170817 and the identification of its host galaxy have allowed for the first standard-siren measurement of the Hubble constant, with an uncertainty of $sim 14%$. As more detections of binary neutron stars with redshift measurement a re made, the uncertainty will shrink. The dominating factors will be the number of joint detections and the uncertainty on the luminosity distance of each event. Neutron star black hole mergers are also promising sources for advanced LIGO and Virgo. If the black hole spin induces precession of the orbital plane, the degeneracy between luminosity distance and the orbital inclination is broken, leading to a much better distance measurement. In addition neutron star black hole sources are observable to larger distances, owing to their higher mass. Neutron star black holes could also emit electromagnetic radiation: depending on the black hole spin and on the mass ratio, the neutron star can be tidally disrupted resulting in electromagnetic emission. We quantify the distance uncertainty for a wide range of black hole mass, spin and orientations and find that the 1-$sigma$ statistical uncertainty can be up to a factor of $sim 10$ better than for a non-spinning binary neutron star merger with the same signal-to-noise ratio. The better distance measurement, the larger gravitational-wave detectable volume, and the potentially bright electromagnetic emission, imply that spinning black hole neutron star binaries can be the optimal standard siren sources as long as their astrophysical rate is larger than $O(10)$ Gpc$^{-3}$yr$^{-1}$, a value allowed by current astrophysical constraints.
We investigate a recently proposed method for measuring the Hubble constant from gravitational wave detections of binary black hole coalescences without electromagnetic counterparts. In the absence of a direct redshift measurement, the missing inform ation on the left-hand side of the Hubble-Lema^itre law is provided by the statistical knowledge on the redshift distribution of sources. We assume that source distribution in redshift depends on just one unknown hyper-parameter, modeling our ignorance of the astrophysical binary black hole distribution. With tens of thousands of these black sirens -- a realistic figure for the third generation detectors Einstein Telescope and Cosmic Explorer -- an observational constraint on the value of the Hubble parameter at percent level can be obtained. This method has the advantage of not relying on electromagnetic counterparts, which accompany a very small fraction of gravitational wave detections, nor on often unavailable or incomplete galaxy catalogs.
The Hubble constant ($H_0$) estimated from the local Cepheid-supernova (SN) distance ladder is in 3-$sigma$ tension with the value extrapolated from cosmic microwave background (CMB) data assuming the standard cosmological model. Whether this tension represents new physics or systematic effects is the subject of intense debate. Here, we investigate how new, independent $H_0$ estimates can arbitrate this tension, assessing whether the measurements are consistent with being derived from the same model using the posterior predictive distribution (PPD). We show that, with existing data, the inverse distance ladder formed from BOSS baryon acoustic oscillation measurements and the Pantheon SN sample yields an $H_0$ posterior near-identical to the Planck CMB measurement. The observed local distance ladder value is a very unlikely draw from the resulting PPD. Turning to the future, we find that a sample of $sim50$ binary neutron star standard sirens (detectable within the next decade) will be able to adjudicate between the local and CMB estimates.
Observations of gravitational waves and their electromagnetic counterparts may soon uncover the existence of coalescing compact binary systems formed by a stellar-mass black hole and a neutron star. These mergers result in a remnant black hole, possi bly surrounded by an accretion disk. The mass and spin of the remnant black hole depend on the properties of the coalescing binary. We construct a map from the binary components to the remnant black hole using a sample of numerical-relativity simulations of different mass ratios $q$, (anti-)aligned dimensionless spins of the black hole $a_{rm BH}$, and several neutron star equations of state. Given the binary total mass, the mass and spin of the remnant black hole can therefore be determined from the three parameters $(q,a_{rm BH},Lambda)$, where $Lambda$ is the tidal deformability of the neutron star. Our models also incorporate the binary black hole and test-mass limit cases and we discuss a simple extension for generic black hole spins. We combine the remnant characterization with recent population synthesis simulations for various metallicities of the progenitor stars that generated the binary system. We predict that black-hole-neutron-star mergers produce a population of remnant black holes with masses distributed around $7M_odot$ and $9M_odot$. For isotropic spin distributions, nonmassive accretion disks are favoured: no bright electromagnetic counterparts are expected in such mergers.
The origin of the heavy elements in the Universe is not fully determined. Neutron star-black hole (NSBH) and neutron star-neutron star mergers may both produce heavy elements via rapid neutron-capture process (r-process). We use the recent detection of gravitational waves from NSBHs, improved measurements of neutron star equation-of-state, and the most modern numerical simulations of the ejected materials from binary collisions to investigate the production of heavy elements from binary mergers. As the amount of ejecta depends on the mass and spin distribution of compact objects, as well as on the equation-of-state of neutron stars, we consider various models for these quantities, informed by gravitational-wave and pulsar data. We find that even in the most favorable model, neutron star-black hole mergers are unlikely to account for more than 77% of the r-process elements in the local Universe. If black holes have preferentially small spins, this bound decreases to 35%. Finally, if black hole spins are small and there is a dearth of low mass ($<5M_{odot}$) black holes in NSBH binaries, the NSBH contribution to r-process elements is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا