ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the contribution of neutron star-black hole mergers to the production of heavy metals

92   0   0.0 ( 0 )
 نشر من قبل Hsin-Yu Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the heavy elements in the Universe is not fully determined. Neutron star-black hole (NSBH) and neutron star-neutron star mergers may both produce heavy elements via rapid neutron-capture process (r-process). We use the recent detection of gravitational waves from NSBHs, improved measurements of neutron star equation-of-state, and the most modern numerical simulations of the ejected materials from binary collisions to investigate the production of heavy elements from binary mergers. As the amount of ejecta depends on the mass and spin distribution of compact objects, as well as on the equation-of-state of neutron stars, we consider various models for these quantities, informed by gravitational-wave and pulsar data. We find that even in the most favorable model, neutron star-black hole mergers are unlikely to account for more than 77% of the r-process elements in the local Universe. If black holes have preferentially small spins, this bound decreases to 35%. Finally, if black hole spins are small and there is a dearth of low mass ($<5M_{odot}$) black holes in NSBH binaries, the NSBH contribution to r-process elements is negligible.

قيم البحث

اقرأ أيضاً

182 - Chang Liu , Lijing Shao 2021
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes. However, currently information about NS equation of state (EoS) is extracted with very limited precision. Meanwhile, the fruitful results from the serendipitous discovery of the $gamma$-ray burst alongside GW170817 show the necessity of early warning alerts. Accurate measurements of the matter effects and sky location could be achieved by joint GW detection from space and ground. In our work, based on two example cases, GW170817 and GW200105, we use the Fisher information matrix analysis to investigate the multiband synergy between the space-borne decihertz GW detectors and the ground-based Einstein Telescope (ET). We specially focus on the parameters pertaining to spin-induced quadrupole moment, tidal deformability, and sky localization. We demonstrate that, (i) only with the help of multiband observations can we constrain the quadrupole parameter; and (ii) with the inclusion of decihertz GW detectors, the errors of tidal deformability would be a few times smaller, indicating that many more EoSs could be excluded; (iii) with the inclusion of ET, the sky localization improves by about an order of magnitude. Furthermore, we have systematically compared the different limits from four planned decihertz detectors and adopting two widely used waveform models.
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactiv ely powered emission from the ejecta of black hole (BH) - neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the nature of compact binary coalescences.
LIGO and Virgos third observing run (O3) revealed the first neutron star-black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements creating optical/near-IR kilonova (KN) emission. The join t gravitational-wave (GW) and electromagnetic detection of an NSBH merger could be used to constrain the equation of state of dense nuclear matter, and independently measure the local expansion rate of the universe. Here, we present the optical follow-up and analysis of two of the only three high-significance NSBH merger candidates detected to date, S200105ae and S200115j, with the Zwicky Transient Facility (ZTF). ZTF observed $sim$,48% of S200105ae and $sim$,22% of S200115js localization probabilities, with observations sensitive to KNe brighter than $-$17.5,mag fading at 0.5,mag/day in g- and r-bands; extensive searches and systematic follow-up of candidates did not yield a viable counterpart. We present state-of-the-art KN models tailored to NSBH systems that place constraints on the ejecta properties of these NSBH mergers. We show that with depths of $rm m_{rm AB}approx 22$ mag, attainable in meter-class, wide field-of-view survey instruments, strong constraints on ejecta mass are possible, with the potential to rule out low mass ratios, high BH spins, and large neutron star radii.
The detection of GW170817 and the identification of its host galaxy have allowed for the first standard-siren measurement of the Hubble constant, with an uncertainty of $sim 14%$. As more detections of binary neutron stars with redshift measurement a re made, the uncertainty will shrink. The dominating factors will be the number of joint detections and the uncertainty on the luminosity distance of each event. Neutron star black hole mergers are also promising sources for advanced LIGO and Virgo. If the black hole spin induces precession of the orbital plane, the degeneracy between luminosity distance and the orbital inclination is broken, leading to a much better distance measurement. In addition neutron star black hole sources are observable to larger distances, owing to their higher mass. Neutron star black holes could also emit electromagnetic radiation: depending on the black hole spin and on the mass ratio, the neutron star can be tidally disrupted resulting in electromagnetic emission. We quantify the distance uncertainty for a wide range of black hole mass, spin and orientations and find that the 1-$sigma$ statistical uncertainty can be up to a factor of $sim 10$ better than for a non-spinning binary neutron star merger with the same signal-to-noise ratio. The better distance measurement, the larger gravitational-wave detectable volume, and the potentially bright electromagnetic emission, imply that spinning black hole neutron star binaries can be the optimal standard siren sources as long as their astrophysical rate is larger than $O(10)$ Gpc$^{-3}$yr$^{-1}$, a value allowed by current astrophysical constraints.
In this work we study the formation of the first two black hole-neutron star (BHNS) mergers detected in gravitational waves (GW200115 and GW200105) from massive stars in wide isolated binary systems - the isolated binary evolution channel. We use 560 BHNS binary population synthesis model realizations from Broekgaarden et al. (2021a) and show that the system properties (chirp mass, component masses and mass ratios) of both GW200115 and GW200105 match predictions from the isolated binary evolution channel. We also show that most model realizations can account for the local BHNS merger rate densities inferred by LIGO-Virgo. However, to simultaneously also match the inferred local merger rate densities for BHBH and NSNS systems we find we need models with moderate kick velocities ($sigmalesssim 10^2,rm{km},rm{s}^{-1}$) or high common-envelope efficiencies ($alpha_{rm{CE}}gtrsim 2$) within our model explorations. We conclude that the first two observed BHNS mergers can be explained from the isolated binary evolution channel for reasonable model realizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا