ﻻ يوجد ملخص باللغة العربية
Stock trend forecasting has become a popular research direction that attracts widespread attention in the financial field. Though deep learning methods have achieved promising results, there are still many limitations, for example, how to extract clean features from the raw stock data. In this paper, we introduce an emph{Augmented Disentanglement Distillation (ADD)} approach to remove interferential features from the noised raw data. Specifically, we present 1) a disentanglement structure to separate excess and market information from the stock data to avoid the two factors disturbing each others own prediction. Besides, by applying 2) a dynamic self-distillation method over the disentanglement framework, other implicit interference factors can also be removed. Further, thanks to the decoder module in our framework, 3) a novel strategy is proposed to augment the training samples based on the different excess and market features to improve performance. We conduct experiments on the Chinese stock market data. Results show that our method significantly improves the stock trend forecasting performances, as well as the actual investment income through backtesting, which strongly demonstrates the effectiveness of our approach.
Stock trend forecasting, aiming at predicting the stock future trends, is crucial for investors to seek maximized profits from the stock market. Many event-driven methods utilized the events extracted from news, social media, and discussion board to
Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget. It is a commonly used technique for model compression, where a larger capacity teacher model with better quality is used to train
Seasonal time series Forecasting remains a challenging problem due to the long-term dependency from seasonality. In this paper, we propose a two-stage framework to forecast univariate seasonal time series. The first stage explicitly learns the long-r
The multivariate time series forecasting has attracted more and more attention because of its vital role in different fields in the real world, such as finance, traffic, and weather. In recent years, many research efforts have been proposed for forec
It has long been recognized that academic success is a result of both cognitive and non-cognitive dimensions acting together. Consequently, any intelligent learning platform designed to improve learning outcomes (LOs) must provide actionable inputs t