ترغب بنشر مسار تعليمي؟ اضغط هنا

Denoising-based Turbo Message Passing for Compressed Video Background Subtraction

83   0   0.0 ( 0 )
 نشر من قبل Zhipeng Xue
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the compressed video background subtraction problem that separates the background and foreground of a video from its compressed measurements. The background of a video usually lies in a low dimensional space and the foreground is usually sparse. More importantly, each video frame is a natural image that has textural patterns. By exploiting these properties, we develop a message passing algorithm termed offline denoising-based turbo message passing (DTMP). We show that these structural properties can be efficiently handled by the existing denoising techniques under the turbo message passing framework. We further extend the DTMP algorithm to the online scenario where the video data is collected in an online manner. The extension is based on the similarity/continuity between adjacent video frames. We adopt the optical flow method to refine the estimation of the foreground. We also adopt the sliding window based background estimation to reduce complexity. By exploiting the Gaussianity of messages, we develop the state evolution to characterize the per-iteration performance of offline and online DTMP. Comparing to the existing algorithms, DTMP can work at much lower compression rates, and can subtract the background successfully with a lower mean squared error and better visual quality for both offline and online compressed video background subtraction.



قيم البحث

اقرأ أيضاً

112 - Zhipeng Xue , Junjie Ma , 2017
Turbo compressed sensing (Turbo-CS) is an efficient iterative algorithm for sparse signal recovery with partial orthogonal sensing matrices. In this paper, we extend the Turbo-CS algorithm to solve compressed sensing problems involving more general s ignal structure, including compressive image recovery and low-rank matrix recovery. A main difficulty for such an extension is that the original Turbo-CS algorithm requires prior knowledge of the signal distribution that is usually unavailable in practice. To overcome this difficulty, we propose to redesign the Turbo-CS algorithm by employing a generic denoiser that does not depend on the prior distribution and hence the name denoising-based Turbo-CS (D-Turbo-CS). We then derive the extrinsic information for a generic denoiser by following the Turbo-CS principle. Based on that, we optimize the parametric extrinsic denoisers to minimize the output mean-square error (MSE). Explicit expressions are derived for the extrinsic SURE-LET denoiser used in compressive image denoising and also for the singular value thresholding (SVT) denoiser used in low-rank matrix denoising. We find that the dynamics of D-Turbo-CS can be well described by a scaler recursion called MSE evolution, similar to the case for Turbo-CS. Numerical results demonstrate that D-Turbo-CS considerably outperforms the counterpart algorithms in both reconstruction quality and running time.
Graph neural networks (GNNs) are a powerful inductive bias for modelling algorithmic reasoning procedures and data structures. Their prowess was mainly demonstrated on tasks featuring Markovian dynamics, where querying any associated data structure d epends only on its latest state. For many tasks of interest, however, it may be highly beneficial to support efficient data structure queries dependent on previous states. This requires tracking the data structures evolution through time, placing significant pressure on the GNNs latent representations. We introduce Persistent Message Passing (PMP), a mechanism which endows GNNs with capability of querying past state by explicitly persisting it: rather than overwriting node representations, it creates new nodes whenever required. PMP generalises out-of-distribution to more than 2x larger test inputs on dynamic temporal range queries, significantly outperforming GNNs which overwrite states.
Graph neural networks have recently achieved great successes in predicting quantum mechanical properties of molecules. These models represent a molecule as a graph using only the distance between atoms (nodes). They do not, however, consider the spat ial direction from one atom to another, despite directional information playing a central role in empirical potentials for molecules, e.g. in angular potentials. To alleviate this limitation we propose directional message passing, in which we embed the messages passed between atoms instead of the atoms themselves. Each message is associated with a direction in coordinate space. These directional message embeddings are rotationally equivariant since the associated directions rotate with the molecule. We propose a message passing scheme analogous to belief propagation, which uses the directional information by transforming messages based on the angle between them. Additionally, we use spherical Bessel functions and spherical harmonics to construct theoretically well-founded, orthogonal representations that achieve better performance than the currently prevalent Gaussian radial basis representations while using fewer than 1/4 of the parameters. We leverage these innovations to construct the directional message passing neural network (DimeNet). DimeNet outperforms previous GNNs on average by 76% on MD17 and by 31% on QM9. Our implementation is available online.
153 - Yi Liu , Limei Wang , Meng Liu 2021
We consider representation learning from 3D graphs in which each node is associated with a spatial position in 3D. This is an under explored area of research, and a principled framework is currently lacking. In this work, we propose a generic framewo rk, known as the 3D graph network (3DGN), to provide a unified interface at different levels of granularity for 3D graphs. Built on 3DGN, we propose the spherical message passing (SMP) as a novel and specific scheme for realizing the 3DGN framework in the spherical coordinate system (SCS). We conduct formal analyses and show that the relative location of each node in 3D graphs is uniquely defined in the SMP scheme. Thus, our SMP represents a complete and accurate architecture for learning from 3D graphs in the SCS. We derive physically-based representations of geometric information and propose the SphereNet for learning representations of 3D graphs. We show that existing 3D deep models can be viewed as special cases of the SphereNet. Experimental results demonstrate that the use of complete and accurate 3D information in 3DGN and SphereNet leads to significant performance improvements in prediction tasks.
Maximum a posteriori (MAP) inference in discrete-valued Markov random fields is a fundamental problem in machine learning that involves identifying the most likely configuration of random variables given a distribution. Due to the difficulty of this combinatorial problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms that are often interpreted as coordinate descent on the dual LP. To achieve more desirable computational properties, a number of methods regularize the LP with an entropy term, leading to a class of smooth message passing algorithms with convergence guarantees. In this paper, we present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient methods. The proposed algorithms incorporate the familiar steps of standard smooth message passing algorithms, which can be viewed as coordinate minimization steps. We show that these accelerated variants achieve faster rates for finding $epsilon$-optimal points of the unregularized problem, and, when the LP is tight, we prove that the proposed algorithms recover the true MAP solution in fewer iterations than standard message passing algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا