ﻻ يوجد ملخص باللغة العربية
Bipartite graph embedding has recently attracted much attention due to the fact that bipartite graphs are widely used in various application domains. Most previous methods, which adopt random walk-based or reconstruction-based objectives, are typically effective to learn local graph structures. However, the global properties of bipartite graph, including community structures of homogeneous nodes and long-range dependencies of heterogeneous nodes, are not well preserved. In this paper, we propose a bipartite graph embedding called BiGI to capture such global properties by introducing a novel local-global infomax objective. Specifically, BiGI first generates a global representation which is composed of two prototype representations. BiGI then encodes sampled edges as local representations via the proposed subgraph-level attention mechanism. Through maximizing the mutual information between local and global representations, BiGI enables nodes in bipartite graph to be globally relevant. Our model is evaluated on various benchmark datasets for the tasks of top-K recommendation and link prediction. Extensive experiments demonstrate that BiGI achieves consistent and significant improvements over state-of-the-art baselines. Detailed analyses verify the high effectiveness of modeling the global properties of bipartite graph.
The richness in the content of various information networks such as social networks and communication networks provides the unprecedented potential for learning high-quality expressive representations without external supervision. This paper investig
A variety of graph neural networks (GNNs) frameworks for representation learning on graphs have been recently developed. These frameworks rely on aggregation and iteration scheme to learn the representation of nodes. However, information between node
BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantical
Extending the capabilities of robotics to real-world complex, unstructured environments requires the need of developing better perception systems while maintaining low sample complexity. When dealing with high-dimensional state spaces, current method
Signed networks are such social networks having both positive and negative links. A lot of theories and algorithms have been developed to model such networks (e.g., balance theory). However, previous work mainly focuses on the unipartite signed netwo