ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure control of the magnetic anisotropy of the quasi-two-dimensional van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$

124   0   0.0 ( 0 )
 نشر من قبل Vladislav Kataev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of the pressure-dependent measurements of the static magnetization and of the ferromagnetic resonance (FMR) of Cr$_2$Ge$_2$Te$_6$ to address the properties of the ferromagnetic phase of this quasi-two-dimensional van der Waals magnet. The static magnetic data at hydrostatic pressures up to 3.4 GPa reveal a gradual suppression of ferromagnetism in terms of a reduction of the critical transition temperature, a broadening of the transition width and an increase of the field necessary to fully saturate the magnetization $M_{rm s}$. The value of $M_{rm s} simeq 3mu_{rm B}$/Cr remains constant within the error bars up to a pressure of 2.8 GPa. The anisotropy of the FMR signal continuously diminishes in the studied hydrostatic pressure range up to 2.39 GPa suggesting a reduction of the easy-axis type magnetocrystalline anisotropy energy (MAE). A quantitative analysis of the FMR data gives evidence that up to this pressure the MAE constant $K_{rm U}$, although getting significantly smaller, still remains finite and positive, i.e. of the easy-axis type. Therefore, a recently discussed possibility of switching the sign of the magnetocrystalline anisotropy in Cr$_2$Ge$_2$Te$_6$ could only be expected at still higher pressures, if possible at all due to the observed weakening of the ferromagnetism under pressure. This circumstance may be of relevance for the design of strain-engineered functional heterostructures containing layers of Cr$_2$Ge$_2$Te$_6$.

قيم البحث

اقرأ أيضاً

160 - M. Suzuki , B. Gao , G. Shibata 2021
The van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$ (CGT) has a two-dimensional crystal structure where each layer is stacked through van der Waals force. We have investigated the nature of the ferromagnetism and the weak perpendicular magnetic anisotro py (PMA) of CGT by means of X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) studies of CGT single crystals. The XMCD spectra at the Cr $L_{2,3}$ edge for different magnetic field directions were analyzed on the basis of the cluster-model multiplet calculation. The Cr valence is confirmed to be 3+ and the orbital magnetic moment is found to be nearly quenched, as expected for the high-spin $t_{2g}$$^3$ configuration of the Cr$^{3+}$ ion. A large ($sim 0.2$ eV) trigonal crystal-field splitting of the $t_{2g}$ level caused by the distortion of the CrTe$_6$ octahedron has been revealed, while the single-ion anisotropy (SIA) of the Cr atom is found to have a sign {it opposite} to the observed PMA and too weak compared to the reported anisotropy energy. The present result suggests that anisotropic exchange coupling between the Cr atoms through the ligand Te $5p$ orbitals having strong spin-orbit coupling has to be invoked to explain the weak PMA of CGT, as in the case of the strong PMA of CrI$_3$.
80 - M. Suzuki , B. Gao , K. Koshiishi 2018
In order to investigate the electronic properties of the semiconducting van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$ (CGT), where ferromagnetic layers are bonded through van der Waals forces, we have performed angle-resolved photoemission spectroscop y (ARPES) measurements and density-functional-theory (DFT+U) calculations. The valence-band maximum at the {Gamma} point is located $sim$ 0.2 eV below the Fermi level, consistent with the semiconducting property of CGT. Comparison of the experimental density of states with the DFT calculation has suggested that Coulomb interaction between the Cr 3d electrons U$_{rm eff}$ $sim$ 1.1 eV. The DFT+U calculation indicates that magnetic coupling between Cr atoms within the layer is ferromagnetic if Coulomb U $_{rm eff}$ is smaller than 3.0 eV and that the inter-layer coupling is ferromagnetic below U$_{rm eff}$ $sim$ 1.0 eV. We therefore conclude that, for U$_{rm eff}$ deduced by the experiment, the intra-layer Cr-Cr coupling is ferromagnetic and the inter-layer coupling is near the boundary between ferromagnetic and antiferromagnetic, which means experimentally deduced U$_{rm eff}$ is consistent with theoretical ferromagnetic condition.
We study the magnetisation dynamics of a bulk single crystal Cr$_2$Ge$_2$Te$_6$ (CGT), by means of broadband ferromagnetic resonance (FMR), for temperatures from 60 K down to 2 K. We determine the Kittel relations of the fundamental FMR mode as a fun ction of frequency and static magnetic field for the magnetocrystalline easy - and hard - axis. The uniaxial magnetocrystalline anisotropy constant is extracted and compared with the saturation magnetisation, when normalised with their low temperature values. The ratios show a clear temperature dependence when plotted in the logarithmic scale, which departs from the predicted Callen-Callen power law fit of a straight line, where the scaling exponent textit{n}, $K_{u}(T) propto [M_s(T)/M_s(2$ K$)]^n$, contradicts the expected value of 3 for uniaxial anisotropy. Additionally, the spectroscopic g-factor for both the magnetic easy - and hard - axis exhibits a temperature dependence, with an inversion between 20 K and 30 K, suggesting an influence by orbital angular momentum. Finally, we qualitatively discuss the observation of multi-domain resonance phenomena in the FMR spectras, at magnetic fields below the saturation magnetisation.
Electrical control of magnetism of a ferromagnetic semiconductor offers exciting prospects for future spintronic devices for processing and storing information. Here, we report observation of electrically modulated magnetic phase transition and magne tic anisotropy in thin crystal of Cr$_2$Ge$_2$Te$_6$ (CGT), a layered ferromagnetic semiconductor. We show that heavily electron-doped ($sim$ $10^{14}$ cm$^{-2}$) CGT in an electric double-layer transistor device is found to exhibit hysteresis in magnetoresistance (MR), a clear signature of ferromagnetism, at temperatures up to above 200 K, which is significantly higher than the known Curie temperature of 61 K for an undoped material. Additionally, angle-dependent MR measurements reveal that the magnetic easy axis of this new ground state lies within the layer plane in stark contrast to the case of undoped CGT, whose easy axis points in the out-of-plane direction. We propose that significant doping promotes double-exchange mechanism mediated by free carriers, prevailing over the superexchange mechanism in the insulating state. Our findings highlight that electrostatic gating of this class of materials allows not only charge flow switching but also magnetic phase switching, evidencing their potential for spintronics applications.
We present experimental and theoretical evidence that an interesting quantum many-body effect -- quasi-particle breakdown -- occurs in the quasi-one-dimensional spin-1/2 Ising-like ferromagnet CoNb$_2$O$_6$ in its paramagnetic phase at high transvers e field as a result of explicit breaking of spin inversion symmetry. We propose a quantum spin Hamiltonian capturing the essential one-dimensional physics of CoNb$_2$O$_6$ and determine the exchange parameters of this model by fitting the calculated single particle dispersion to the one observed experimentally in applied transverse magnetic fields. We present high-resolution inelastic neutron scattering measurements of the single particle dispersion which observe anomalous broadening effects over a narrow energy range at intermediate energies. We propose that this effect originates from the decay of the one particle mode into two-particle states. This decay arises from (i) a finite overlap between the one-particle dispersion and the two-particle continuum in a narrow energy-momentum range and (ii) a small misalignment of the applied field away from the direction perpendicular to the Ising axis in the experiments, which allows for non-zero matrix elements for decay by breaking the $mathbb{Z}_2$ spin inversion symmetry of the Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا