ترغب بنشر مسار تعليمي؟ اضغط هنا

A spin dynamics study in layered van der Waals single crystal, Cr$_2$Ge$_2$Te$_6$

99   0   0.0 ( 0 )
 نشر من قبل Safe Khan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the magnetisation dynamics of a bulk single crystal Cr$_2$Ge$_2$Te$_6$ (CGT), by means of broadband ferromagnetic resonance (FMR), for temperatures from 60 K down to 2 K. We determine the Kittel relations of the fundamental FMR mode as a function of frequency and static magnetic field for the magnetocrystalline easy - and hard - axis. The uniaxial magnetocrystalline anisotropy constant is extracted and compared with the saturation magnetisation, when normalised with their low temperature values. The ratios show a clear temperature dependence when plotted in the logarithmic scale, which departs from the predicted Callen-Callen power law fit of a straight line, where the scaling exponent textit{n}, $K_{u}(T) propto [M_s(T)/M_s(2$ K$)]^n$, contradicts the expected value of 3 for uniaxial anisotropy. Additionally, the spectroscopic g-factor for both the magnetic easy - and hard - axis exhibits a temperature dependence, with an inversion between 20 K and 30 K, suggesting an influence by orbital angular momentum. Finally, we qualitatively discuss the observation of multi-domain resonance phenomena in the FMR spectras, at magnetic fields below the saturation magnetisation.



قيم البحث

اقرأ أيضاً

160 - M. Suzuki , B. Gao , G. Shibata 2021
The van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$ (CGT) has a two-dimensional crystal structure where each layer is stacked through van der Waals force. We have investigated the nature of the ferromagnetism and the weak perpendicular magnetic anisotro py (PMA) of CGT by means of X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) studies of CGT single crystals. The XMCD spectra at the Cr $L_{2,3}$ edge for different magnetic field directions were analyzed on the basis of the cluster-model multiplet calculation. The Cr valence is confirmed to be 3+ and the orbital magnetic moment is found to be nearly quenched, as expected for the high-spin $t_{2g}$$^3$ configuration of the Cr$^{3+}$ ion. A large ($sim 0.2$ eV) trigonal crystal-field splitting of the $t_{2g}$ level caused by the distortion of the CrTe$_6$ octahedron has been revealed, while the single-ion anisotropy (SIA) of the Cr atom is found to have a sign {it opposite} to the observed PMA and too weak compared to the reported anisotropy energy. The present result suggests that anisotropic exchange coupling between the Cr atoms through the ligand Te $5p$ orbitals having strong spin-orbit coupling has to be invoked to explain the weak PMA of CGT, as in the case of the strong PMA of CrI$_3$.
80 - M. Suzuki , B. Gao , K. Koshiishi 2018
In order to investigate the electronic properties of the semiconducting van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$ (CGT), where ferromagnetic layers are bonded through van der Waals forces, we have performed angle-resolved photoemission spectroscop y (ARPES) measurements and density-functional-theory (DFT+U) calculations. The valence-band maximum at the {Gamma} point is located $sim$ 0.2 eV below the Fermi level, consistent with the semiconducting property of CGT. Comparison of the experimental density of states with the DFT calculation has suggested that Coulomb interaction between the Cr 3d electrons U$_{rm eff}$ $sim$ 1.1 eV. The DFT+U calculation indicates that magnetic coupling between Cr atoms within the layer is ferromagnetic if Coulomb U $_{rm eff}$ is smaller than 3.0 eV and that the inter-layer coupling is ferromagnetic below U$_{rm eff}$ $sim$ 1.0 eV. We therefore conclude that, for U$_{rm eff}$ deduced by the experiment, the intra-layer Cr-Cr coupling is ferromagnetic and the inter-layer coupling is near the boundary between ferromagnetic and antiferromagnetic, which means experimentally deduced U$_{rm eff}$ is consistent with theoretical ferromagnetic condition.
We report the results of the pressure-dependent measurements of the static magnetization and of the ferromagnetic resonance (FMR) of Cr$_2$Ge$_2$Te$_6$ to address the properties of the ferromagnetic phase of this quasi-two-dimensional van der Waals m agnet. The static magnetic data at hydrostatic pressures up to 3.4 GPa reveal a gradual suppression of ferromagnetism in terms of a reduction of the critical transition temperature, a broadening of the transition width and an increase of the field necessary to fully saturate the magnetization $M_{rm s}$. The value of $M_{rm s} simeq 3mu_{rm B}$/Cr remains constant within the error bars up to a pressure of 2.8 GPa. The anisotropy of the FMR signal continuously diminishes in the studied hydrostatic pressure range up to 2.39 GPa suggesting a reduction of the easy-axis type magnetocrystalline anisotropy energy (MAE). A quantitative analysis of the FMR data gives evidence that up to this pressure the MAE constant $K_{rm U}$, although getting significantly smaller, still remains finite and positive, i.e. of the easy-axis type. Therefore, a recently discussed possibility of switching the sign of the magnetocrystalline anisotropy in Cr$_2$Ge$_2$Te$_6$ could only be expected at still higher pressures, if possible at all due to the observed weakening of the ferromagnetism under pressure. This circumstance may be of relevance for the design of strain-engineered functional heterostructures containing layers of Cr$_2$Ge$_2$Te$_6$.
85 - Jiaheng Li , Yang Li , Shiqiao Du 2018
The interplay of magnetism and topology is a key research subject in condensed matter physics and material science, which offers great opportunities to explore emerging new physics, like the quantum anomalous Hall (QAH) effect, axion electrodynamics and Majorana fermions. However, these exotic physical effects have rarely been realized in experiment, due to the lacking of suitable working materials. Here we predict that van der Waals layered MnBi$_2$Te$_4$-family materials show two-dimensional (2D) ferromagnetism in the single layer and three-dimensional (3D) $A$-type antiferromagnetism in the bulk, which could serve as a next-generation material platform for the state-of-art research. Remarkably, we predict extremely rich topological quantum effects with outstanding features in an experimentally available material MnBi$_2$Te$_4$, including a 3D antiferromagnetic topological insulator with the long-sought topological axion states, the type-II magnetic Weyl semimetal (WSM) with simply one pair of Weyl points, and the high-temperature intrinsic QAH effect. These striking predictions, if proved experimentally, could profoundly transform future research and technology of topological quantum physics.
Superatomic crystals are composed of discrete modular clusters that emulate the role of atoms in traditional atomic solids$^{1-4}$. Owing to their unique hierarchical structures, these materials are promising candidates to host exotic phenomena, such as superconductivity and magnetism that can be revealed through doping$^{5-10}$. Low-dimensional superatomic crystals hold great promise as electronic components$^{11,12}$, enabling these properties to be applied to nanocircuits, but the impact of doping in such compounds remains unexplored. Here we report the electrical transport properties of Re$_6$Se$_8$Cl$_2$, a two-dimensional superatomic semiconductor$^{13,14}$. Using an in situ current annealing technique, we find that this compound can be n-doped through Cl dissociation, drastically altering the transport behaviour from semiconducting to metallic and giving rise to superconductivity below $sim$ 9 K. This work is the first example of superconductivity in a van der Waals (vdW) superatomic crystal; more broadly, it establishes a new chemical strategy to manipulate the electronic properties of vdW materials with labile ligands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا