ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyman-alpha spectroscopy of extreme [OIII] emitting galaxies at $zsimeq2-3$: Implications for Ly$alpha$ visibility and LyC leakage at $z>6$

71   0   0.0 ( 0 )
 نشر من قبل Mengtao Tang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectroscopic observations of massive $z>7$ galaxies selected to have extremely large [OIII]+H$beta$ equivalent width (EW $sim1500$ r{A}) have recently revealed large Ly$alpha$ detection rates, in contrast to the weak emission seen in the general population. Why these systems are uniquely visible in Ly$alpha$ at redshifts where the IGM is likely significantly neutral is not clear. With the goal of better understanding these results, we have begun a campaign with MMT and Magellan to measure Ly$alpha$ in galaxies with similar [OIII]+H$beta$ EWs at $zsimeq2-3$. At these redshifts, the IGM is highly ionized, allowing us to clearly disentangle how the Ly$alpha$ properties depend on the [OIII]+H$beta$ EW. Here we present Ly$alpha$ EWs of $49$ galaxies at $z=2.2-3.7$ with intense [OIII]+H$beta$ line emission (EW $=300-3000$ r{A}). Our results demonstrate that strong Ly$alpha$ emission (EW $>20$ r{A}) becomes more common in galaxies with larger [OIII]+H$beta$ EW, reflecting a combination of increasingly efficient ionizing photon production and enhanced transmission of Ly$alpha$. Among the galaxies with the most extreme [OIII]+H$beta$ emission (EW $sim1500$ r{A}), we find that strong Ly$alpha$ emission is not ubiquitous, with only $50$ per cent of our population showing Ly$alpha$ EW $>20$ r{A}. Our data suggest that the range of Ly$alpha$ strengths is related to the observed ellipticity, with those systems that appear edge-on or elongated having weaker Ly$alpha$ emission. We use these results to interpret the anomalous Ly$alpha$ properties seen in $z>7$ galaxies with extreme [OIII]+H$beta$ emission and discuss implications for the escape of ionizing radiation from these extreme line emitting galaxies.

قيم البحث

اقرأ أيضاً

We report on deep spectroscopy using LRIS on Keck I and FORS2 on the VLT of a sample of 22 candidate z~6 Lyman Break galaxies (LBGs) selected by the i-z> 1.3 dropout criterion. Redshifts could be measured for eight objects. These redshifts are all in the range z = 5.5 - 6.1, confirming the efficiency of the i-z color selection technique. Six of the confirmed galaxies show Ly-alpha emission. Assuming that the 14 objects without redshifts are z~6 LBGs, but lack detectable Ly-alpha emission lines, we infer that the fraction of Ly-alpha emitting LBGs with Ly-alpha equivalent widths greater than 20 Angstroms among z~6 LBGs is ~30%, similar to that found at z~3. Every Ly-alpha emitting object in our sample is compact with r <= 0.14. Furthermore, all the Ly-alpha emitting objects in our sample are more compact than average relative to the observed size-magnitude relation of a large i-dropout sample (332 candidate z~6 objects). We can reject the hypothesis that the Ly-alpha emitting population is a subset of the rest of the z~6 LBG population at >97% confidence. We speculate the small sizes of Ly-alpha emitting LBGs are due to these objects being less massive than other LBGs at z~6.
The GALEX (Galaxy Evolution Explorer) spectroscopic survey mode, with a resolution of about 8 A in the FUV (1350 - 1750 A) and about 20 A in the NUV (1950 - 2750 A) is used for a systematic search of Ly-a emitting galaxies at low redshift. This aims at filling a gap between high-redshift surveys and a small set of objects studied in detail in the nearby universe. A blind search of 7018 spectra extracted in 5 deep exposures (5.65 sq.deg) has resulted in 96 Ly-a emitting galaxy candidates in the FUV domain, after accounting for broad-line AGNs. The Ly-a EWs (equivalent width) are consistent with stellar population model predictions and show no trends as a function of UV color or UV luminosity, except a possible decrease in the most luminous that may be due to small-number statistics. Their distribution in EW is similar to that at z about 3 but their fraction among star-forming galaxies is smaller. Avoiding uncertain candidates, a sub-sample of 66 objects in the range 0.2 < z < 0.35 has been used to build a Ly-a LF (luminosity function). The incompleteness due to objects with significant Ly-a emission but a UV continuum too low for spectral extraction has been evaluated. A comparison with H-a LF in the same redshift domain is consistent with an average Ly-a/H-a of about 1 in about 15 % of the star-forming galaxies. A comparison with high-redshift Ly-a LFs implies an increase of the Ly-a luminosity density by a factor of about 16 from z about 0.3 to z about 3. By comparison with the factor 5 increase of the UV luminosity density in the same redshift range, this suggests an increase of the average Ly-a escape fraction with redshift.
Reionisation-era galaxies often display intense nebular emission lines, both in rest-frame optical ([OIII]+H$beta$) and ultraviolet (UV; CIII], CIV). How such strong nebular emission is powered remains unclear, with both active galactic nuclei (AGN) and hot stars considered equally viable. The UV continuum slopes of these early systems tend to be very blue ($beta<-2$), reflecting minimal dust obscuration, young ages, and low metallicities. This contrasts with narrow-lined AGN at $zsim2-3$, whose UV slopes are significantly redder ($beta>-1$) than typical star-forming systems in the reionisation era. To investigate the properties of AGN in the reionisation era, we have conducted a search for potential examples of rare analogues with blue continua at intermediate redshift ($zsim2-3$). Our goals are to determine whether AGN with intense line emission and blue continua exist and thereby to establish the range of rest-frame UV and optical line ratios in this population. In this paper we report the detection of a X-ray luminous AGN at $z=3.21$ (UDS-24561) with extreme [OIII]+H$beta$ line emission (EW $=1300$ r{A}) and a blue UV continuum slope ($beta=-2.34$). MMT/Binospec and Keck/MOSFIRE spectra indicate rest-frame UV line ratios consistent with AGN photoionisation models and rest-frame optical lines with both a narrow component (FWHM $=154$ km$/$s) and extended broad wings (FWHM $=977$ km$/$s), consistent with outflowing gas. We describe how such objects can be identified in future JWST emission line surveys in the reionisation era, thereby providing a valuable census of AGN activity at $z>6$ and understanding their contribution to cosmic reionisation.
Bright quasars, observed when the Universe was less than one billion years old (z>5.5), are known to host massive black holes (~10$^{9}$ M$_{odot}$), and are thought to reside in the center of massive dark matter overdensities. In this picture, overd ensities of galaxies are expected around high redshift quasars. However, observations based on the detection of Lyman Break Galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are selected through broad-band filters only. To circumvent such uncertainties, we here perform a search for Lyman Alpha Emitting galaxies (LAEs) in the field of the quasar PSO J215.1512-16.0417 at z~5.73, through narrow band, deep imaging with FORS2 at the VLT. We study an area of 37 arcmin$^{2}$, i.e. ~206 comoving Mpc$^{2}$ at the redshift of the quasar. We find no evidence for an overdensity of LAEs in the quasar field with respect to blank field studies. Possible explanations for these findings include that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.
Quasar proximity zones at $z>5.5$ correspond to over-dense and over-ionized environments. Galaxies found inside proximity zones can therefore display features which would otherwise be masked by absorption in the IGM. We demonstrate the utility of thi s quasar-galaxy synergy by reporting the discovery of the first three `proximate Lyman-$alpha$ emitters (LAEs) within the proximity zone of quasar J0836 at $z=5.802$ (textit{Aerith A, B} and textit{C}). textit{Aerith A}, located behind the quasar with an impact parameter $D_perp = 278$ pkpc, provides the first detection of a Lyman-$alpha$ transverse proximity effect. We model the transmission and show it constrains the onset of J0836s quasar phase to $0.2 text{Myr}<t<20text{Myr}$ in the past. The second object, textit{Aerith B} at a distance $D=750$ pkpc from the quasar, displays a bright, broad double-peaked lal emission line. Based on relations calibrated at $zleq3$, the peak separation implies a low ionizing $f_{text{esc}} lesssim 1%$, the most direct such constraint on a reionization-era galaxy. We fit the Ly-$alpha$ line with an outflowing shell model, finding a completely typical central density $text{log N}_{text{HI}}/text{cm}^{-2} = 19.3_{-0.2}^{+0.8}$, outflow velocity $v=16_{-11}^{+4}$ km s$^{-1}$, and gas temperature $text{log} T/text{K} = 3.8_{-0.7}^{+0.8}$ compared to $2<z<3$ analogue LAEs. Finally, we detect an emission line at $lambda=8177$ AA in object textit{Aerith C} which, if it is lal at $z=5.726$, would correspond closely with the end of the quasars proximity zone ($Delta z<0.02$ from the boundary) and suggests the quasar influences the IGM up to $sim85$ cMpc away, making it the largest quasar proximity zone. Via the analyses conducted here, we illustrate how proximate LAEs offer unique insight into the ionizing properties of both quasars and galaxies during the epoch of reionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا