ترغب بنشر مسار تعليمي؟ اضغط هنا

No overdensity of Lyman Alpha Emitting Galaxies around a quasar at z~5.7

70   0   0.0 ( 0 )
 نشر من قبل Chiara Mazzucchelli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bright quasars, observed when the Universe was less than one billion years old (z>5.5), are known to host massive black holes (~10$^{9}$ M$_{odot}$), and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high redshift quasars. However, observations based on the detection of Lyman Break Galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are selected through broad-band filters only. To circumvent such uncertainties, we here perform a search for Lyman Alpha Emitting galaxies (LAEs) in the field of the quasar PSO J215.1512-16.0417 at z~5.73, through narrow band, deep imaging with FORS2 at the VLT. We study an area of 37 arcmin$^{2}$, i.e. ~206 comoving Mpc$^{2}$ at the redshift of the quasar. We find no evidence for an overdensity of LAEs in the quasar field with respect to blank field studies. Possible explanations for these findings include that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

قيم البحث

اقرأ أيضاً

Quasar proximity zones at $z>5.5$ correspond to over-dense and over-ionized environments. Galaxies found inside proximity zones can therefore display features which would otherwise be masked by absorption in the IGM. We demonstrate the utility of thi s quasar-galaxy synergy by reporting the discovery of the first three `proximate Lyman-$alpha$ emitters (LAEs) within the proximity zone of quasar J0836 at $z=5.802$ (textit{Aerith A, B} and textit{C}). textit{Aerith A}, located behind the quasar with an impact parameter $D_perp = 278$ pkpc, provides the first detection of a Lyman-$alpha$ transverse proximity effect. We model the transmission and show it constrains the onset of J0836s quasar phase to $0.2 text{Myr}<t<20text{Myr}$ in the past. The second object, textit{Aerith B} at a distance $D=750$ pkpc from the quasar, displays a bright, broad double-peaked lal emission line. Based on relations calibrated at $zleq3$, the peak separation implies a low ionizing $f_{text{esc}} lesssim 1%$, the most direct such constraint on a reionization-era galaxy. We fit the Ly-$alpha$ line with an outflowing shell model, finding a completely typical central density $text{log N}_{text{HI}}/text{cm}^{-2} = 19.3_{-0.2}^{+0.8}$, outflow velocity $v=16_{-11}^{+4}$ km s$^{-1}$, and gas temperature $text{log} T/text{K} = 3.8_{-0.7}^{+0.8}$ compared to $2<z<3$ analogue LAEs. Finally, we detect an emission line at $lambda=8177$ AA in object textit{Aerith C} which, if it is lal at $z=5.726$, would correspond closely with the end of the quasars proximity zone ($Delta z<0.02$ from the boundary) and suggests the quasar influences the IGM up to $sim85$ cMpc away, making it the largest quasar proximity zone. Via the analyses conducted here, we illustrate how proximate LAEs offer unique insight into the ionizing properties of both quasars and galaxies during the epoch of reionization.
Ly$alpha$ photons scattered by neutral hydrogen atoms in the circumgalactic media or produced in the halos of star-forming galaxies are expected to lead to extended Ly$alpha$ emission around galaxies. Such low surface brightness Ly$alpha$ halos (LAHs ) have been detected by stacking Ly$alpha$ images of high-redshift star-forming galaxies. We study the origin of LAHs by performing radiative transfer modeling of nine $z=3.1$ Lyman-Alpha Emitters (LAEs) in a high resolution hydrodynamic cosmological galaxy formation simulation. We develop a method of computing the mean Ly$alpha$ surface brightness profile of each LAE by effectively integrating over many different observing directions. Without adjusting any parameters, our model yields an average Ly$alpha$ surface brightness profile in remarkable agreement with observations. We find that observed LAHs cannot be accounted for solely by photons originating from the central LAE and scattered to large radii by hydrogen atoms in the circumgalactic gas. Instead, Ly$alpha$ emission from regions in the outer halo is primarily responsible for producing the extended LAHs seen in observations, which potentially includes both star-forming and cooling radiation. With the limit on the star formation contribution set by the ultra-violet (UV) halo measurement, we find that cooling radiation can play an important role in forming the extended LAHs. We discuss the implications and caveats of such a picture.
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-$alpha$ line redshifted to $sim$ 0.9 microns at z>6.5. Here, we report the discovery of a very Lyman-$alpha$ luminous quasar, PSO J006.1240+39.2219 at redshift z=6.618, selected based on its red colour and multi-epoch detection of the Lyman-$alpha$ emission in a single near-infrared band. The Lyman-$alpha$-line luminosity of PSO J006.1240+39.2219 is unusually high and estimated to be 0.8$times$10$^{12}$ Solar luminosities (about 3% of the total quasar luminosity). The Lyman-$alpha$ emission of PSO J006.1240+39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-$alpha$ line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.
We present measurements of the mean and scatter of the IGM Lyman-{alpha} opacity at 4.9 < z < 6.1 along the lines of sight of 62 quasars at z > 5.7, the largest sample assembled at these redshifts to date by a factor of two. The sample size enables u s to sample cosmic variance at these redshifts more robustly than ever before. The spectra used here were obtained by the SDSS, DES-VHS and SHELLQs collaborations, drawn from the ESI and X-Shooter archives, reused from previous studies or observed specifically for this work. We measure the effective optical depth of Lyman-{alpha} in bins of 10, 30, 50 and 70 cMpc h-1, construct cumulative distribution functions under two treatments of upper limits on flux and explore an empirical analytic fit to residual Lyman-{alpha} transmission. We verify the consistency of our results with those of previous studies via bootstrap re-sampling and confirm the existence of tails towards high values in the opacity distributions, which may persist down to z = 5.2. Comparing our results with predictions from cosmological simulations, we find further strong evidence against models that include a spatially uniform ionizing background and temperature-density relation. We also compare to IGM models that include either a fluctuating UVB dominated by rare quasars or temperature fluctuations due to patchy reionization. Although both models produce better agreement with the observations, neither fully captures the observed scatter in IGM opacity. Our sample of 62 z > 5.7 quasar spectra opens many avenues for future study of the reionisation epoch.
We selected 40 candidate Lyman Alpha Emitting galaxies (LAEs) at z ~=3.1 with observed frame equivalent widths >150A and inferred emission line fluxes >2.5x10^-17 ergs/cm^2/s from deep narrow-band and broad-band MUSYC images of the Extended Chandra D eep Field South. Covering 992 sq. arcmin, this is the largest ``blank field surveyed for LAEs at z ~3, allowing an improved estimate of the space density of this population of 3+-1x10^-4 h_70^3/Mpc^3. Spectroscopic follow-up of 23 candidates yielded 18 redshifts, all at z ~=3.1. Over 80% of the LAEs are dimmer in continuum magnitude than the typical Lyman break galaxy spectroscopic limit of R= 25.5 (AB), with a median continuum magnitude R ~=27 and very blue continuum colors, (V-z) ~=0. Over 80% of the LAEs have the right UVR colors to be selected as Lyman break galaxies, but only 10% also have R<=25.5. Stacking the UBVRIzJK fluxes reveals that LAEs have stellar masses ~=5x10^8 h_70^-2 M_sun and minimal dust extinction, A_V < ~ 0.1. Inferred star formation rates are ~=6 h_70^-2 M_sun/yr, yielding a cosmic star formation rate density of 2x10^-3 h_70 M_sun/yr/Mpc^3. None of our LAE candidates show evidence for rest-frame emission line equivalent widths EW_rest>240A which might imply a non-standard IMF. One candidate is detected by Chandra, implying an AGN fraction of 2+-2% for LAE candidate samples. In summary, LAEs at z ~ 3 have rapid star formation, low stellar mass, little dust obscuration and no evidence for a substantial AGN component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا