ترغب بنشر مسار تعليمي؟ اضغط هنا

SMPLy Benchmarking 3D Human Pose Estimation in the Wild

94   0   0.0 ( 0 )
 نشر من قبل Vincent Leroy
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicting 3D human pose from images has seen great recent improvements. Novel approaches that can even predict both pose and shape from a single input image have been introduced, often relying on a parametric model of the human body such as SMPL. While qualitative results for such methods are often shown for images captured in-the-wild, a proper benchmark in such conditions is still missing, as it is cumbersome to obtain ground-truth 3D poses elsewhere than in a motion capture room. This paper presents a pipeline to easily produce and validate such a dataset with accurate ground-truth, with which we benchmark recent 3D human pose estimation methods in-the-wild. We make use of the recently introduced Mannequin Challenge dataset which contains in-the-wild videos of people frozen in action like statues and leverage the fact that people are static and the camera moving to accurately fit the SMPL model on the sequences. A total of 24,428 frames with registered body models are then selected from 567 scenes at almost no cost, using only online RGB videos. We benchmark state-of-the-art SMPL-based human pose estimation methods on this dataset. Our results highlight that challenges remain, in particular for difficult poses or for scenes where the persons are partially truncated or occluded.

قيم البحث

اقرأ أيضاً

Human pose estimation from single images is a challenging problem in computer vision that requires large amounts of labeled training data to be solved accurately. Unfortunately, for many human activities (eg outdoor sports) such training data does no t exist and is hard or even impossible to acquire with traditional motion capture systems. We propose a self-supervised approach that learns a single image 3D pose estimator from unlabeled multi-view data. To this end, we exploit multi-view consistency constraints to disentangle the observed 2D pose into the underlying 3D pose and camera rotation. In contrast to most existing methods, we do not require calibrated cameras and can therefore learn from moving cameras. Nevertheless, in the case of a static camera setup, we present an optional extension to include constant relative camera rotations over multiple views into our framework. Key to the success are new, unbiased reconstruction objectives that mix information across views and training samples. The proposed approach is evaluated on two benchmark datasets (Human3.6M and MPII-INF-3DHP) and on the in-the-wild SkiPose dataset.
We present Exemplar Fine-Tuning (EFT), a new method to fit a 3D parametric human model to a single RGB input image cropped around a person with 2D keypoint annotations. While existing parametric human model fitting approaches, such as SMPLify, rely o n the view-agnostic human pose priors to enforce the output in a plausible 3D pose space, EFT exploits the pose prior that comes from the specific 2D input observations by leveraging a fully-trained 3D pose regressor. We thoroughly compare our EFT with SMPLify, and demonstrate that EFT produces more reliable and accurate 3D human fitting outputs on the same inputs. Especially, we use our EFT to augment a large scale in-the-wild 2D keypoint datasets, such as COCO and MPII, with plausible and convincing 3D pose fitting outputs. We demonstrate that the pseudo ground-truth 3D pose data by EFT can supervise a strong 3D pose estimator that outperforms the previous state-of-the-art in the standard outdoor benchmark (3DPW), even without using any ground-truth 3D human pose datasets such as Human3.6M. Our code and data are available at https://github.com/facebookresearch/eft.
We present an approach to estimate 3D poses of multiple people from multiple camera views. In contrast to the previous efforts which require to establish cross-view correspondence based on noisy and incomplete 2D pose estimations, we present an end-t o-end solution which directly operates in the $3$D space, therefore avoids making incorrect decisions in the 2D space. To achieve this goal, the features in all camera views are warped and aggregated in a common 3D space, and fed into Cuboid Proposal Network (CPN) to coarsely localize all people. Then we propose Pose Regression Network (PRN) to estimate a detailed 3D pose for each proposal. The approach is robust to occlusion which occurs frequently in practice. Without bells and whistles, it outperforms the state-of-the-arts on the public datasets. Code will be released at https://github.com/microsoft/multiperson-pose-estimation-pytorch.
We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide baselines. It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in t he environment. In contrast to previous efforts which require to establish cross-view correspondence based on noisy 2D pose estimates, it directly estimates and tracks 3D poses from a 3D voxel-based representation constructed from multi-view images. We first discretize the 3D space by regular voxels and compute a feature vector for each voxel by averaging the body joint heatmaps that are inversely projected from all views. We estimate 3D poses from the voxel representation by predicting whether each voxel contains a particular body joint. Similarly, a Re-ID feature is computed for each voxel which is used to track the estimated 3D poses over time. The main advantage of the approach is that it avoids making any hard decisions based on individual images. The approach can robustly estimate and track 3D poses even when people are severely occluded in some cameras. It outperforms the state-of-the-art methods by a large margin on three public datasets including Shelf, Campus and CMU Panoptic.
89 - Sheng Jin , Lumin Xu , Jin Xu 2020
This paper investigates the task of 2D human whole-body pose estimation, which aims to localize dense landmarks on the entire human body including face, hands, body, and feet. As existing datasets do not have whole-body annotations, previous methods have to assemble different deep models trained independently on different datasets of the human face, hand, and body, struggling with dataset biases and large model complexity. To fill in this blank, we introduce COCO-WholeBody which extends COCO dataset with whole-body annotations. To our best knowledge, it is the first benchmark that has manual annotations on the entire human body, including 133 dense landmarks with 68 on the face, 42 on hands and 23 on the body and feet. A single-network model, named ZoomNet, is devised to take into account the hierarchical structure of the full human body to solve the scale variation of different body parts of the same person. ZoomNet is able to significantly outperform existing methods on the proposed COCO-WholeBody dataset. Extensive experiments show that COCO-WholeBody not only can be used to train deep models from scratch for whole-body pose estimation but also can serve as a powerful pre-training dataset for many different tasks such as facial landmark detection and hand keypoint estimation. The dataset is publicly available at https://github.com/jin-s13/COCO-WholeBody.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا