ﻻ يوجد ملخص باللغة العربية
This paper investigates the task of 2D human whole-body pose estimation, which aims to localize dense landmarks on the entire human body including face, hands, body, and feet. As existing datasets do not have whole-body annotations, previous methods have to assemble different deep models trained independently on different datasets of the human face, hand, and body, struggling with dataset biases and large model complexity. To fill in this blank, we introduce COCO-WholeBody which extends COCO dataset with whole-body annotations. To our best knowledge, it is the first benchmark that has manual annotations on the entire human body, including 133 dense landmarks with 68 on the face, 42 on hands and 23 on the body and feet. A single-network model, named ZoomNet, is devised to take into account the hierarchical structure of the full human body to solve the scale variation of different body parts of the same person. ZoomNet is able to significantly outperform existing methods on the proposed COCO-WholeBody dataset. Extensive experiments show that COCO-WholeBody not only can be used to train deep models from scratch for whole-body pose estimation but also can serve as a powerful pre-training dataset for many different tasks such as facial landmark detection and hand keypoint estimation. The dataset is publicly available at https://github.com/jin-s13/COCO-WholeBody.
We introduce DOPE, the first method to detect and estimate whole-body 3D human poses, including bodies, hands and faces, in the wild. Achieving this level of details is key for a number of applications that require understanding the interactions of t
Predicting 3D human pose from images has seen great recent improvements. Novel approaches that can even predict both pose and shape from a single input image have been introduced, often relying on a parametric model of the human body such as SMPL. Wh
Human pose estimation from single images is a challenging problem in computer vision that requires large amounts of labeled training data to be solved accurately. Unfortunately, for many human activities (eg outdoor sports) such training data does no
Occlusion is probably the biggest challenge for human pose estimation in the wild. Typical solutions often rely on intrusive sensors such as IMUs to detect occluded joints. To make the task truly unconstrained, we present AdaFuse, an adaptive multivi
We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide baselines. It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in t