ﻻ يوجد ملخص باللغة العربية
We study linearization of lattice gauge theory. Linearized theory approximates lattice gauge theory in the same manner as the loop O(n)-model approximates the spin O(n)-model. Under mild assumptions, we show that the expectation of an observable in linearized Abelian gauge theory coincides with the expectation in the Ising model with random edge-weights. We find a similar relation between Yang-Mills theory and 4-state Potts model. For the latter, we introduce a new observable.
For a smooth manifold $M$, possibly with boundary and corners, and a Lie group $G$, we consider a suitable description of gauge fields in terms of parallel transport, as groupoid homomorphisms from a certain path groupoid in $M$ to $G$. Using a cotri
In recent years, attempts to generalize lattice gauge theories to model topological order have been carried out through the so called $2$-gauge theories. These have opened the door to interesting new models and new topological phases which are not de
We reformulate the Thirring model in $D$ $(2 le D < 4)$ dimensions as a gauge theory by introducing $U(1)$ hidden local symmetry (HLS) and study the dynamical mass generation of the fermion through the Schwinger-Dyson (SD) equation. By virtue of such
We study the class of non-holonomic power series with integer coefficients that reduce, modulo primes, or powers of primes, to algebraic functions. In particular we try to determine whether the susceptibility of the square-lattice Ising model belongs
We obtain in exact arithmetic the order 24 linear differential operator $L_{24}$ and right hand side $E^{(5)}$ of the inhomogeneous equation$L_{24}(Phi^{(5)}) = E^{(5)}$, where $Phi^{(5)} =tilde{chi}^{(5)}-tilde{chi}^{(3)}/2+tilde{chi}^{(1)}/120$ is