ﻻ يوجد ملخص باللغة العربية
Ferrimagnetic Mn$_4$N is a promising material for heat flux sensors based on the anomalous Nernst effect (ANE) because of its sizable uniaxial magnetic anisotropy ($K_{rm u}$) and low saturation magnetization ($M_{rm s}$). We experimentally and theoretically investigated the ANE and anomalous Hall effect in sputter-deposited Mn$_4$N films. It was revealed that the observed negative anomalous Hall conductivity ($sigma_{xy}$) could be explained by two different coexisting magnetic structures, that is, a dominant magnetic structure with high $K_{rm u}$ contaminated by another structure with negligible $K_{rm u}$ owing to an imperfect degree of order of nitrogen. The observed transverse thermoelectric power ($S_{rm ANE}$) of $+0.5, mu{rm V/K}$ at $300, {rm K}$ gave a transverse thermoelectric coefficient ($alpha_{xy}$) of $+0.34, {rm A/(m cdot K)}$, which was smaller than the value predicted from first-principles calculation. The interpretation for $alpha_{xy}$ based on the first-principles calculations led us to conclude that the realization of single magnetic structure with high $K_{rm u}$ and optimal adjustment of the Fermi level are promising approaches to enhance $S_{rm ANE}$ in Mn$_4$N through the sign reversal of $sigma_{xy}$ and the enlargement of $alpha_{xy}$ up to a theoretical value of $1.77, {rm A/(m cdot K)}$.
Antiferromagnets with tunable phase transitions are promising for future spintronics applications. We investigated spin-dependent transport properties of FeRh thin films, which show a temperature driven antiferromagnetic-to-ferromagnetic phase transi
Synthesis of crystallographically well-defined thin films of topological materials is important for unraveling their mesoscale quantum properties and for device applications. Mn$_3$Ge, an antiferromagnetic Weyl semimetal with a chiral magnetic struct
We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in proximity-induced ferromagnetic palladium and platinum which is widely used in spintronics, within the Berry phase formalism based on the relativistic band structure calcul
We report the growth of noncollinear antiferromagnetic (AFM) Mn$_3$Ni$_{0.35}$Cu$_{0.65}$N films and the orientation-dependent anomalous Hall effect (AHE) of (001) and (111) films due to nonzero Berry curvature. We found that post-annealing at 500$^c
Mn$_{3-x}$Ga (x = 0.1, 0.4, 0.7) thin films on MgO and SrTiO$_3$ substrates were investigated with magnetic anisotropy perpendicular to the film plane. An anomalous Hall-effect was observed for the tetragonal distorted lattice in the crystallographic