ﻻ يوجد ملخص باللغة العربية
Knowledge graph (KG), as the side information, is widely utilized to learn the semantic representations of item/user for recommendation system. The traditional recommendation algorithms usually just depend on user-item interactions, but ignore the inherent web information describing the item/user, which could be formulated by the knowledge graph embedding (KGE) methods to significantly improve applications performance. In this paper, we propose a knowledge-aware-based recommendation algorithm to capture the local and global representation learning from heterogeneous information. Specifically, the local model and global model can naturally depict the inner patterns in the content-based heterogeneous information and interactive behaviors among the users and items. Based on the method that local and global representations are learned jointly by graph convolutional networks with attention mechanism, the final recommendation probability is calculated by a fully-connected neural network. Extensive experiments are conducted on two real-world datasets to verify the proposed algorithms validation. The evaluation results indicate that the proposed algorithm surpasses state-of-arts by $10.0%$, $5.1%$, $2.5%$ and $1.8%$ in metrics of MAE, RMSE, AUC and F1-score at least, respectively. The significant improvements reveal the capacity of our proposal to recommend user/item effectively.
Recommending appropriate algorithms to a classification problem is one of the most challenging issues in the field of data mining. The existing algorithm recommendation models are generally constructed on only one kind of meta-features by single lear
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) predict
Session-based recommendation (SBR) learns users preferences by capturing the short-term and sequential patterns from the evolution of user behaviors. Among the studies in the SBR field, graph-based approaches are a relatively powerful kind of way, wh
Due to its nature of learning from dynamic interactions and planning for long-run performance, reinforcement learning (RL) recently has received much attention in interactive recommender systems (IRSs). IRSs usually face the large discrete action spa
With the advent of deep learning, neural network-based recommendation models have emerged as an important tool for tackling personalization and recommendation tasks. These networks differ significantly from other deep learning networks due to their n