ﻻ يوجد ملخص باللغة العربية
We present and analyze a minimalist model for the vertical transport of people in a tall building by elevators. We focus on start-of-day operation in which people arrive at the ground floor of the building at a fixed rate. When an elevator arrives on the ground floor, passengers enter until the elevator capacity is reached, and then they are transported to their destination floors. We determine the distribution of times that each person waits until an elevator arrives, the number of people waiting for elevators, and transition to synchrony for multiple elevators when the arrival rate of people is sufficiently large. We validate many of our predictions by event-driven simulations.
Galam reshuffling introduced in opinion dynamics models is investigated under the nearest neighbor Ising model on a square lattice using Monte Carlo simulations. While the corresponding Galam analytical critical temperature T_C approx 3.09 [J/k_B] is
We report fully relativistic molecular-dynamics simulations that verify the appearance of thermal equilibrium of a classical gas inside a uniformly accelerated container. The numerical experiments confirm that the local momentum distribution in this
We introduce a new rule of motion for a totally asymmetric exclusion process (TASEP) representing pedestrian traffic on a lattice. Its characteristic feature is that the positions of the pedestrians, modeled as hard-core particles, are updated in a f
In this paper, we generalize the original majority-vote (MV) model with noise from two states to arbitrary $q$ states, where $q$ is an integer no less than two. The main emphasis is paid to the comparison on the nature of phase transitions between th
We introduce a new update algorithm for exclusion processes, more suitable for the modeling of pedestrian traffic. Pedestrians are modeled as hard-core particles hopping on a discrete lattice, and are updated in a fixed order, determined by a phase a