ﻻ يوجد ملخص باللغة العربية
We present observations of the $^3P_1$-$^3P_0$ fine-structure line of atomic carbon using the ASTE 10 m sub-mm telescope towards RCW38, the youngest super star cluster in the Milky Way. The detected [CI] emission is compared with the CO $J$ = 1-0 image cube presented in Fukui et al. (2016) which has an angular resolution of 40$^{prime prime}$ ($sim$ 0.33 pc). The overall distribution of the [CI] emission in this cluster is similar to that of the $^{13}$CO emission. The optical depth of the [CI] emission was found to be $tau$ = 0.1-0.6, suggesting mostly optically thin emission. An empirical conversion factor from the [CI] integrated intensity to the H$_2$ column density was estimated as $X_{rm [CI]}$ = 6.3 $times$ 10$^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s (for visual extinction: $A_V$ $le$ 10 mag) and 1.4 $times$ 10$^{21}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s (for $A_V$ of 10-100 mag). The column density ratio of the [CI] to CO ($N_{rm [CI]}/N_{rm CO}$) was derived as $sim$ 0.1 for $A_V$ of 10-100 mag, which is consistent with that of the Orion cloud presented in Ikeda et al. (2002). However, our results cover an $A_V$ regime of up to 100 mag, which is wider than the coverage found in Orion, which reach up to $sim$ 60 mag. Such a high [CI]/CO ratio in a high $A_V$ region is difficult to be explained by the plane-parallel photodissociation region (PDR) model, which predicts that this ratio is close to 0 due to the heavy shielding of the ultraviolet (UV) radiation. Our results suggest that the molecular gas in this cluster is highly clumpy, allowing deep penetration of UV radiation even at averaged $A_V$ values of 100 mag. Recent theoretical works have presented models consistent with such clumped gas distribution with a sub-pc clump size (e.g., Tachihara et al. 2018).
Atomic carbon (CI) has been proposed to be a global tracer of the molecular gas as a substitute for CO, however, its utility remains unproven. To evaluate the suitability of CI as the tracer, we performed [CI]$(^3P_1-^3P_0)$ (hereinafter [CI](1-0)) m
We investigate the large-scale structure of the interstellar medium (ISM) around the massive star cluster RCW38 in the [CII] 158 um line and polycyclic aromatic hydrocarbon (PAH) emission. We carried out [CII] line mapping of an area of ~30x15 for RC
Furukawa et al. 2009 reported the existence of a large mass of molecular gas associated with the super star cluster Westerlund 2 and the surrounding HII region RCW49, based on a strong morphological correspondence between NANTEN2 12CO(J=2-1) emission
We observed radio recombination lines (RRLs) toward the W51 molecular cloud complex, one of the most active star forming regions in our Galaxy. The UV radiation from young massive stars ionizes gas surrounding them to produce HII regions. Observation
We report the detection of high-energy gamma-ray signal towards the young star-forming region, W40. Using 10-year Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended gamma-ray excess region with a significance of abo