ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffuse gamma-ray emission toward the massive star-forming region, W40

76   0   0.0 ( 0 )
 نشر من قبل Xiaona Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of high-energy gamma-ray signal towards the young star-forming region, W40. Using 10-year Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended gamma-ray excess region with a significance of about 18sigma. The radiation has a spectrum with a photon index of 2.49 +/- 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the gamma-ray emission. The total cosmic-ray (CR) proton energy in the gamma-ray production region is estimated to be the order of 10^47 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of gamma-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the gamma-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding cocoons.



قيم البحث

اقرأ أيضاً

113 - Yuichiro Ezoe 2005
Chandra ACIS-I data of the molecular cloud and HII region complex NGC 6334 were analyzed. The hard X-ray clumps detected with ASCA (Sekimoto et al. 2000) were resolved into 792 point sources. After removing the point sources, an extended X-ray emissi on component was detected over a 5x9 pc2 region, with the 0.5-8 keV absorption-corrected luminosity of 2x10^33 erg/s. The contribution from faint point sources to this extended emission was estimated as at most ~20 %, suggesting that most of the emission is diffuse in nature. The X-ray spectrum of the diffuse emission was observed to vary from place to place. In tenuous molecular cloud regions with hydrogen column density of 0.5~1x10^22 cm-2, the spectrum can be represented by a thermal plasma model with temperatures of several keV. The spectrum in dense cloud cores exhibits harder continuum, together with higher absorption more than ~3x10^22 cm-2. In some of such highly obscured regions, the spectrum show extremely hard continua equivalent to a photon index of ~1, and favor non-thermal interpretation. These results are discussed in the context of thermal and non-thermal emissions, both powered by fast stellar winds from embedded young early-type stars through shock transitions.
The Fermi Gamma-ray Space Telescope has revealed a diffuse $gamma$-ray background at energies from 0.1 GeV to 1 TeV, which can be separated into Galactic emission and an isotropic, extragalactic component. Previous efforts to understand the latter ha ve been hampered by the lack of physical models capable of predicting the $gamma$-ray emission produced by the many candidate sources, primarily active galactic nuclei and star-forming galaxies, leaving their contributions poorly constrained. Here we present a calculation of the contribution of star-forming galaxies to the $gamma$-ray background that does not rely on empirical scalings, and is instead based on a physical model for the $gamma$-ray emission produced when cosmic rays accelerated in supernova remnants interact with the interstellar medium. After validating the model against local observations, we apply it to the observed cosmological star-forming galaxy population and recover an excellent match to both the total intensity and the spectral slope of the $gamma$-ray background, demonstrating that star-forming galaxies alone can explain the full diffuse, isotropic $gamma$-ray background.
Context. After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy e mitters (pulsars, blazars, supernova remnants, etc.) theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims. The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods. A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results. We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.
We report a study of extended $gamma$-ray emission with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope, which is likely to be the second case of a $gamma$-ray detection from a star-forming region (SFR) in our Galaxy. The L AT source is located in the G25 region, $1.7^{circ} times 2.1^{circ}$ around $(l, b) = (25.0^{circ}, 0.0^{circ})$. The $gamma$-ray emission is found to be composed of two extended sources and one point-like source. The extended sources have a similar sizes of about $1.4^{circ} times 0.6^{circ}$. An $sim 0.4^{circ}$ diameter sub-region of one has a photon index of $Gamma = 1.53 pm 0.15$; and is spatially coincident with HESS J1837$-$069, likely a pulsar wind nebula. The other parts of the extended sources have a photon index of $Gamma = 2.1 pm 0.2$ without significant spectral curvature. Given their spatial and spectral properties, they have no clear associations with sources at other wavelengths. Their $gamma$-ray properties are similar to those of the Cygnus cocoon SFR, the only firmly established $gamma$-ray detection of an SFR in the Galaxy. Indeed, we find bubble-like structures of atomic and molecular gas in G25, which may be created by a putative OB association/cluster. The $gamma$-ray emitting regions appear confined in the bubble-like structure; similar properties are also found in the Cygnus cocoon. In addition, using observations with the the XMM-Newton we find a candidate young massive OB association/cluster G25.18+0.26 in the G25 region. We propose that the extended $gamma$-ray emission in G25 is associated with an SFR driven by G25.18+0.26. Based on this scenario, we discuss possible acceleration processes in the SFR and compare them with the Cygnus cocoon.
184 - I. Jimenez-Serra 2012
We present high angular resolution observations (0.5x0.3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where d ifferent molecular species (Type I, II and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales <3000 AU within a hot core. While Type I species (H2S and 13CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC3N, OCS, SO and SO2) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH3OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO2, HC3N and CH3OH (185+-11 K, 150+-20 K and 124+-12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H2S, SO2 and CH3OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 Mo-star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photo-dissociation and a high-temperature (~1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا