ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering the socioeconomic facets of human mobility

129   0   0.0 ( 0 )
 نشر من قبل Gourab Ghoshal
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Given the rapid recent trend of urbanization, a better understanding of how urban infrastructure mediates socioeconomic interactions and economic systems is of vital importance. While the accessibility of location-enabled devices as well as large-scale datasets of human activities, has fueled significant advances in our understanding, there is little agreement on the linkage between socioeconomic status and its influence on movement patterns, in particular, the role of inequality. Here, we analyze a heavily aggregated and anonymized summary of global mobility and investigate the relationships between socioeconomic status and mobility across a hundred cities in the US and Brazil. We uncover two types of relationships, finding either a clear connection or little-to-no interdependencies. The former tend to be characterized by low levels of public transportation usage, inequitable access to basic amenities and services, and segregated clusters of communities in terms of income, with the latter class showing the opposite trends. Our findings provide useful lessons in designing urban habitats that serve the larger interests of all inhabitants irrespective of their economic status.



قيم البحث

اقرأ أيضاً

Using smartphone location data from Colombia, Mexico, and Indonesia, we investigate how non-pharmaceutical policy interventions intended to mitigate the spread of the COVID-19 pandemic impact human mobility. In all three countries, we find that follo wing the implementation of mobility restriction measures, human movement decreased substantially. Importantly, we also uncover large and persistent differences in mobility reduction between wealth groups: on average, users in the top decile of wealth reduced their mobility up to twice as much as users in the bottom decile. For decision-makers seeking to efficiently allocate resources to response efforts, these findings highlight that smartphone location data can be leveraged to tailor policies to the needs of specific socioeconomic groups, especially the most vulnerable.
Many of our routines and activities are linked to our ability to move; be it commuting to work, shopping for groceries, or meeting friends. Yet, factors that limit the individuals ability to fully realise their mobility needs will ultimately affect t he opportunities they can have access to (e.g. cultural activities, professional interactions). One important aspect frequently overlooked in human mobility studies is how gender-centred issues can amplify other sources of mobility disadvantages (e.g. socioeconomic inequalities), unevenly affecting the pool of opportunities men and women have access to. In this work, we leverage on a combination of computational, statistical, and information-theoretical approaches to investigate the existence of systematic discrepancies in the mobility diversity (i.e. the diversity of travel destinations) of (1) men and women from different socioeconomic backgrounds, and (2) work and non-work travels. Our analysis is based on datasets containing multiple instances of large-scale, official, travel surveys carried out in three major metropolitan areas in South America: Medellin and Bogota in Colombia, and S~ao Paulo in Brazil. Our results indicate the presence of general discrepancies in the urban mobility diversities related to the gender and socioeconomic characteristics of the individuals. Lastly, this paper sheds new light on the possible origins of gender-level human mobility inequalities, contributing to the general understanding of disaggregated patterns in human mobility.
There is a contradiction at the heart of our current understanding of individual and collective mobility patterns. On one hand, a highly influential stream of literature on human mobility driven by analyses of massive empirical datasets finds that hu man movements show no evidence of characteristic spatial scales. There, human mobility is described as scale-free. On the other hand, in geography, the concept of scale, referring to meaningful levels of description from individual buildings through neighborhoods, cities, regions, and countries, is central for the description of various aspects of human behavior such as socio-economic interactions, or political and cultural dynamics. Here, we resolve this apparent paradox by showing that day-to-day human mobility does indeed contain meaningful scales, corresponding to spatial containers restricting mobility behavior. The scale-free results arise from aggregating displacements across containers. We present a simple model, which given a persons trajectory, infers their neighborhoods, cities, and so on, as well as the sizes of these geographical containers. We find that the containers characterizing the trajectories of more than 700,000 individuals do indeed have typical sizes. We show that our model generates highly realistic trajectories without overfitting and provides a new lens through which to understand the differences in mobility behaviour across countries, gender groups, and urban-rural areas.
Major disasters such as extreme weather events can magnify and exacerbate pre-existing social disparities, with disadvantaged populations bearing disproportionate costs. Despite the implications for equity and emergency planning, we lack a quantitati ve understanding of how these social fault lines translate to different behaviors in large-scale emergency contexts. Here we investigate this problem in the context of Hurricane Harvey, using over 30 million anonymized GPS records from over 150,000 opted-in users in the Greater Houston Area to quantify patterns of disaster-inflicted relocation activities before, during, and after the shock. We show that evacuation distance is highly homogenous across individuals from different types of neighborhoods classified by race and wealth, obeying a truncated power-law distribution. Yet here the similarities end: we find that both race and wealth strongly impact evacuation patterns, with disadvantaged minority populations less likely to evacuate than wealthier white residents. Finally, there are considerable discrepancies in terms of departure and return times by race and wealth, with strong social cohesion among evacuees from advantaged neighborhoods in their destination choices. These empirical findings bring new insights into mobility and evacuations, providing policy recommendations for residents, decision makers, and disaster managers alike.
Human mobility patterns are surprisingly structured. In spite of many hard to model factors, such as climate, culture, and socioeconomic opportunities, aggregate migration rates obey a universal, parameter-free, `radiation model. Recent work has furt her shown that the detailed spectral decomposition of these flows -- defined as the number of individuals that visit a given location with frequency $f$ from a distance $r$ away -- also obeys simple rules, namely, scaling as a universal inverse square law in the combination, $rf$. However, this surprising regularity, derived on general grounds, has not been explained through microscopic mechanisms of individual behavior. Here we confirm this by analyzing large-scale cell phone datasets from three distinct regions and show that a direct consequence of this scaling law is that the average `travel energy spent by visitors to a given location is constant across space, a finding reminiscent of the well-known travel budget hypothesis of human movement. The attractivity of different locations, which we define by the total number of visits to that location, also admits non-trivial, spatially-clustered structure. The observed pattern is consistent with the well-known central place theory in urban geography, as well as with the notion of Weber optimality in spatial economy, hinting to a collective human capacity of optimizing recurrent movements. We close by proposing a simple, microscopic human mobility model which simultaneously captures all our empirical findings. Our results have relevance for transportation, urban planning, geography, and other disciplines in which a deeper understanding of aggregate human mobility is key.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا