ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-surface rheology and hydrodynamic boundary condition of semi-dilute polymer solutions

47   0   0.0 ( 0 )
 نشر من قبل Joshua Mcgraw
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding confined flows of complex fluids requires simultaneous access to the mechanical behaviour of the liquid and the boundary condition at the interfaces. Here, we use evanescent wave microscopy to investigate near-surface flows of semi-dilute, unentangled polyacrylamide solutions. By using both neutral and anionic polymers, we show that monomer charge plays a key role in confined polymer dynamics. For solutions in contact with glass, the neutral polymers display chain-sized adsorbed layers, while a shear-rate-dependent apparent slip length is observed for anionic polymer solutions. The slip lengths measured at all concentrations collapse onto a master curve when scaled using a simple two-layer depletion model with non-Newtonian viscosity. A transition from an apparent slip boundary condition to a chain-sized adsorption layer is moreover highlighted by screening the charge with additional salt in the anionic polymer solutions. We anticipate that our study will be a starting point for more complex studies relating the polymer dynamics at interfaces to their chemical and physical composition.

قيم البحث

اقرأ أيضاً

A coarse-grained multi-blob description of polymer solutions is presented, based on soft, transferable effective interactions between bonded and non-bonded blobs. The number of blobs is chosen such that the blob density does not exceed their overlap threshold, allowing polymer concentrations to be explored deep into the semi-dilute regime. This quantitative multi-blob description is shown to preserve known scaling laws of polymer solutions and provides accurate estimates of amplitudes, while leading to orders of magnitude increase of simulation efficiency and allowing analytic calculations of structural and thermodynamic properties.
We study theoretically the surface response of a semi-infinite viscoelastic polymer network using the two-fluid model. We focus on the overdamped limit and on the effect of the networks intrinsic length scales. We calculate the decay rate of slow sur face fluctuations, and the surface displacement in response to a localized force. Deviations from the large-scale continuum response are found at length scales much larger than the networks mesh size. We discuss implications for surface scattering and microrheology. We provide closed-form expressions that can be used for surface microrheology -- the extraction of viscoelastic moduli and intrinsic length scales from the motions of tracer particles lying on the surface without doping the bulk material.
We investigated the viscoelastic properties of colloid-polymer mixtures at intermediate colloid volume fraction and varying polymer concentrations, thereby tuning the attractive interactions. Within the examined range of polymer concentrations, the s amples ranged from fluids to gels. Already in the liquid phase the viscoelastic properties significantly changed when approaching the gelation boundary, indicating the formation of clusters and transient networks. This is supported by an increasing correlation length of the density fluctuations, observed by static light scattering and microscopy. At the same time, the correlation function determined by dynamic light scattering completely decays, indicating the absence of dynamical arrest. Upon increasing the polymer concentration beyond the gelation boundary, the rheological properties changed qualitatively again, now they are consistent with the formation of colloidal gels. Our experimental results, namely the location of the gelation boundary as well as the elastic (storage) and viscous (loss) moduli, are compared to different theoretical models. These include consideration of the escape time as well as predictions for the viscoelastic moduli based on scaling relations and Mode Coupling Theories (MCT).
Extensive molecular simulations are applied to characterize the equilibrium dynamics, entanglement topology, and nonlinear extensional rheology of symmetric ring-linear polymer blends with systematically varied ring fraction $phi_R$. Chains with degr ee of entanglement $Zapprox14$ mixed to produce 10 well-entangled systems with $phi_R$ varying from neat linear to neat ring melts. Primitive path analysis are used to visualize and quantify the structure of the composite ring-linear entanglement network. We directly measure the quantity of ring-linear threading and linear-linear entanglement as a function of $phi_R$, and identify with simple arguments a ring fraction $phi_Rapprox0.4$ where the topological constraints of the entanglement network are maximized. These topological analyses are used to rationalize the $phi_R$-dependence of ring and linear chain dynamics, conformations, and blend viscosity. Complimentary simulations of startup uniaxial elongation flows demonstrate the extensional stress overshoot observed in recent filament stretching experiments, and characterize how it depends on the blend composition and entanglement topology. The overshoot is driven by an overstretching and recoil of ring polymer conformations that is caused by the convective unthreading of rings from linear chains. This produces significant changes in the entanglement structure of blends that we directly visualize and quantify with primitive path analyses during flow.
The classical rheological theories of entangled polymeric liquids are built upon two pillars: Gaussian statistics of entanglement strands and the assumption that the stress arises exclusively from the change of intramolecular configuration entropy. W e show that these two hypotheses are not supported by molecular dynamics simulations of polymer melts. Specifically, the segment distribution functions at the entanglement length scale and below deviate considerably from the theoretical predictions, in both the equilibrium and deformed states. Further conformational analysis reveals that the intrachain entropic stress at the entanglement length scale is substantially smaller than the total stress, indicative of a considerable contribution from interchain entropy. Lastly, the relation between entanglement strand entropic stress and macroscopic stress exhibits a bifurcation behavior during deformation and stress relaxation, which cannot be accounted for by the classical theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا