ﻻ يوجد ملخص باللغة العربية
A coarse-grained multi-blob description of polymer solutions is presented, based on soft, transferable effective interactions between bonded and non-bonded blobs. The number of blobs is chosen such that the blob density does not exceed their overlap threshold, allowing polymer concentrations to be explored deep into the semi-dilute regime. This quantitative multi-blob description is shown to preserve known scaling laws of polymer solutions and provides accurate estimates of amplitudes, while leading to orders of magnitude increase of simulation efficiency and allowing analytic calculations of structural and thermodynamic properties.
Understanding confined flows of complex fluids requires simultaneous access to the mechanical behaviour of the liquid and the boundary condition at the interfaces. Here, we use evanescent wave microscopy to investigate near-surface flows of semi-dilu
We study the relaxation dynamics of a coarse-grained polymer chain at different degrees of stretching by both analytical means and numerical simulations. The macromolecule is modelled as a string of beads, connected by anharmonic springs, subject to
We present a comprehensive investigation of polymer diffusion in the semidilute regime by fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS). Using single-labeled polystyrene chains, FCS leads to the self-diffusion coeffic
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $epsilon$ between the chaperone and the chain and the chaperone
We investigate the ejection dynamics of a ring polymer out of a cylindrical nanochannel using both theoretical analysis and three dimensional Langevin dynamics simulations. The ejection dynamics for ring polymers shows two regimes like for linear pol