ﻻ يوجد ملخص باللغة العربية
Let $X^{2n}subseteq mathbb{P} ^N$ be a smooth projective variety. Consider the intersection cohomology complex of the local system $R^{2n-1}pi{_*}mathbb{Q}$, where $pi$ denotes the projection from the universal hyperplane family of $X^{2n}$ to ${(mathbb{P} ^N)}^{vee}$. We investigate the cohomology of the intersection cohomology complex $IC(R^{2n-1}pi{_*}mathbb{Q})$ over the points of a Severis variety, parametrizing nodal hypersurfaces, whose nodes impose independent conditions on the very ample linear system giving the embedding in $mathbb{P} ^N$.
We investigate the equivariant intersection cohomology of a toric variety. Considering the defining fan of the variety as a finite topological space with the subfans being the open sets (that corresponds to the toric topology given by the invariant o
We prove several results concerning the intersection cohomology and the perverse filtration associated with a Lagrangian fibration of an irreducible symplectic variety. We first show that the perverse numbers only depend on the deformation equivalenc
We give a complete description of the equivariant quantum cohomology ring of any smooth hypertoric variety, and find a mirror formula for the quantum differential equation.
In this paper we survey geometric and arithmetic techniques to study the cohomology of semiprojective hyperkaehler manifolds including toric hyperkaehler varieties, Nakajima quiver varieties and moduli spaces of Higgs bundles on Riemann surfaces. The
In this paper we give a geometric characterization of the cones of toric varieties that are complete intersections. In particular, we prove that the class of complete intersection cones is the smallest class of cones which is closed under direct sum