ترغب بنشر مسار تعليمي؟ اضغط هنا

On the geometry of complete intersection toric varieties

126   0   0.0 ( 0 )
 نشر من قبل Apostolos Thoma
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we give a geometric characterization of the cones of toric varieties that are complete intersections. In particular, we prove that the class of complete intersection cones is the smallest class of cones which is closed under direct sum and contains all simplex cones. Further, we show that the number of the extreme rays of such a cone, which is less than or equal to $2n-2$, is exactly $2n-2$ if and only if the cone is a bipyramidal cone, where $n>1$ is the dimension of the cone. Finally, we characterize all toric varieties whose associated cones are complete intersection cones.

قيم البحث

اقرأ أيضاً

We develop an analogue of Eisenbud-Floystad-Schreyers Tate resolutions for toric varieties. Our construction, which is given by a noncommutative analogue of a Fourier-Mukai transform, works quite generally and provides a new perspective on the relati onship between Tate resolutions and Beilinsons resolution of the diagonal. We also develop a Beilinson-type resolution of the diagonal for toric varieties and use it to generalize Eisenbud-Floystad-Schreyers computationally effective construction of Beilinson monads.
143 - Gottfried Barthel 1999
We investigate the equivariant intersection cohomology of a toric variety. Considering the defining fan of the variety as a finite topological space with the subfans being the open sets (that corresponds to the toric topology given by the invariant o pen subsets), equivariant intersection cohomology provides a sheaf (of graded modules over a sheaf of graded rings) on that fan space. We prove that this sheaf is a minimal extension sheaf, i.e., that it satisfies three relatively simple axioms which are known to characterize such a sheaf up to isomorphism. In the verification of the second of these axioms, a key role is played by equivariantly formal toric varieties, where equivariant and usual (non-equivariant) intersection cohomology determine each other by Kunneth type formulae. Minimal extension sheaves can be constructed in a purely formal way and thus also exist for non-rational fans. As a consequence, we can extend the notion of an equivariantly formal fan even to this general setup. In this way, it will be possible to introduce virtual intersection cohomology for equivariantly formal non-rational fans.
We study standard monomial bases for Richardson varieties inside the flag variety. In general, writing down a standard monomial basis for a Richardson variety can be challenging, as it involves computing so-called defining chains or key tableaux. How ever, for a certain family of Richardson varieties, indexed by compatible permutations, we provide a very direct and straightforward combinatorial rule for writing down a standard monomial basis. We apply this result to the study of toric degenerations of Richardson varieties. In particular, we provide a new family of toric degenerations of Richardson varieties inside flag varieties.
We present some applications of the deformation theory of toric Fano varieties to K-(semi/poly)stability of Fano varieties. First, we present two examples of K-polystable toric Fano 3-fold with obstructed deformations. In one case, the K-moduli space s and stacks are reducible near the closed point associated to the toric Fano 3-fold, while in the other they are non-reduced near the closed point associated to the toric Fano 3-fold. Second, we study K-stability of the general members of two deformation families of smooth Fano 3-folds by building degenerations to K-polystable toric Fano 3-folds.
We characterize the graphs $G$ for which their toric ideals $I_G$ are complete intersections. In particular we prove that for a connected graph $G$ such that $I_G$ is complete intersection all of its blocks are bipartite except of at most two. We pro ve that toric ideals of graphs which are complete intersections are circuit ideals. The generators of the toric ideal correspond to even cycles of $G$ except of at most one generator, which corresponds to two edge disjoint odd cycles joint at a vertex or with a path. We prove that the blocks of the graph satisfy the odd cycle condition. Finally we characterize all complete intersection toric ideals of graphs which are normal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا