ﻻ يوجد ملخص باللغة العربية
Vector beams are inhomogeneously polarized optical fields with nonseparable, quantum-like correlations between their polarisation and spatial components, and hold tremendous promise for classical and quantum communication across various channels, e.g. the atmosphere, underwater, and in optical fibre. Here we show that by exploiting their quantum-like features by virtue of the nonseparability of the field, the decay of both the polarisation and spatial components can be studied in tandem. In particular, we invoke the principle of channel state duality to show that the degree of nonseparability of any vector mode is purely determined by that of a maximally nonseparable one, which we confirm using orbital angular momentum (OAM) as an example for topological charges of l = 1 and l = 10 in a turbulent atmosphere. A consequence is that the well-known cylindrical vector vortex beams are sufficient to predict the behaviour of all vector OAM states through the channel, and find that the rate of decay in vector quality decreases with increasing OAM value, even though the spread in OAM is opposite, increasing with OAM. Our approach offers a fast and easy probe of noisy channels, while at the same time revealing the power of quantum tools applied to classical light.
Correlated imaging through atmospheric turbulence is studied, and the analytical expressions describing turbulence effects on image resolution are derived. Compared with direct imaging, correlated imaging can reduce the influence of turbulence to a c
A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. Ho
Understanding turbulence is the key to our comprehension of many natural and technological flow processes. At the heart of this phenomenon lies its intricate multi-scale nature, describing the coupling between different-sized eddies in space and time
We describe a new model for image propagation through open air in the presence of changes in the index of refraction (e.g. due to turbulence) using the theory of optimal transport. We describe the relationship between photon density, or image intensi
Free-space optical communication with spatial modes of light has become topical due to the possibility of dramatically increasing communication bandwidth via Mode Division Multiplexing (MDM). While both scalar and vector vortex modes have been used a