ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated imaging through atmospheric turbulence

150   0   0.0 ( 0 )
 نشر من قبل Peng-Li Zhang
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Correlated imaging through atmospheric turbulence is studied, and the analytical expressions describing turbulence effects on image resolution are derived. Compared with direct imaging, correlated imaging can reduce the influence of turbulence to a certain extent and reconstruct high-resolution images. The result is backed up by numerical simulations, in which turbulence-induced phase perturbations are simulated by random phase screens inserting propagation paths.



قيم البحث

اقرأ أيضاً

We describe a new model for image propagation through open air in the presence of changes in the index of refraction (e.g. due to turbulence) using the theory of optimal transport. We describe the relationship between photon density, or image intensi ty, and the phase of the traveling wave and, together with a least action principle, suggest a method for approximately recovering the solution of the photon flow. By linking atmospheric propagation solutions to optimal transport, we provide a physics-based (as opposed to phenomenological) model for predicting turbulence-induced changes to sequences of images. Simulated and real data are utilized to validate and compare the model to other existing methods typically used to model this type of data. Given its superior performance in describing experimental data, the new model suggests new algorithms for a variety of atmospheric imaging applications.
A laser beam propagating to a remote target through atmospheric turbulence acquires intensity fluctuations. If the target is cooperative and provides a coherent return beam, the phase measured near the beam transmitter and adaptive optics can, in pri nciple, correct these fluctuations. Generally, however, the target is uncooperative. In this case, we show that an incoherent return from the target can be used instead. Using the principle of reciprocity, we derive a novel relation between the field at the target and the reflected field at a detector. We simulate an adaptive optics system that utilizes this relation to focus a beam through atmospheric turbulence onto the incoherent surface.
We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost imaging central image plane, we are able to dramatically increase the ghost image quality. When imaging a test pattern through turbulence, this method increased the imaged pattern visibility from V = 0.14 +/- 0.04 to V = 0.29 +/- 0.04.
Vector beams are inhomogeneously polarized optical fields with nonseparable, quantum-like correlations between their polarisation and spatial components, and hold tremendous promise for classical and quantum communication across various channels, e.g . the atmosphere, underwater, and in optical fibre. Here we show that by exploiting their quantum-like features by virtue of the nonseparability of the field, the decay of both the polarisation and spatial components can be studied in tandem. In particular, we invoke the principle of channel state duality to show that the degree of nonseparability of any vector mode is purely determined by that of a maximally nonseparable one, which we confirm using orbital angular momentum (OAM) as an example for topological charges of l = 1 and l = 10 in a turbulent atmosphere. A consequence is that the well-known cylindrical vector vortex beams are sufficient to predict the behaviour of all vector OAM states through the channel, and find that the rate of decay in vector quality decreases with increasing OAM value, even though the spread in OAM is opposite, increasing with OAM. Our approach offers a fast and easy probe of noisy channels, while at the same time revealing the power of quantum tools applied to classical light.
We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in cross-talk between OAM modes. We study this cross-talk in OAM for eleven modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا