ﻻ يوجد ملخص باللغة العربية
We discuss Dirac neutrinos whose right-handed component $ u_R$ has new interactions that may lead to a measurable contribution to the effective number of relativistic neutrino species $N_{rm eff}$. We aim at a model-independent and comprehensive study on a variety of possibilities. Processes for $ u_R$-genesis from decay or scattering of thermal species, with spin-0, spin-1/2, or spin-1 initial or final states are all covered. We calculate numerically and analytically the contribution of $ u_R$ to $N_{rm eff}$ primarily in the freeze-in regime, since the freeze-out regime has been studied before. While our approximate analytical results apply only to freeze-in, our numerical calculations work for freeze-out as well, including the transition between the two regimes. Using current and future constraints on $N_{rm eff}$, we obtain limits and sensitivities of CMB experiments on masses and couplings of the new interactions. As a by-product, we obtain the contribution of Higgs-neutrino interactions, $Delta N_{rm eff}^{rm SM} approx 7.5times10^{-12}$, assuming the neutrino mass is 0.1 eV and generated by the standard Higgs mechanism.
If neutrinos are Dirac particles the existence of light right-handed neutrinos $ u_{R}$ is implied. Those would contribute to the effective number of relativistic neutrino species $N_{{rm eff}}$ in the early Universe. With pure standard model interac
We evaluate the contribution to $N_{rm eff}$ of the extra sterile states in low-scale Type I seesaw models (with three extra sterile states). We explore the full parameter space and find that at least two of the heavy states always reach thermalisati
We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, $N_{rm eff}^{rm SM}$, that quantifies the cosmological neutrino-to-photon energy densities. The calculation takes into account neut
A new U(1) gauge symmetry is the simplest extension of the Standard Model and has various theoretical and phenomenological motivations. In this paper, we study the cosmological constraint on the MeV scale dark photon. After the neutrino decoupling er
Gravitinos are a fundamental prediction of supergravity, their mass ($m_{G}$) is informative of the value of the SUSY breaking scale, and, if produced during reheating, their number density is a function of the reheating temperature ($T_{text{rh}}$).