ﻻ يوجد ملخص باللغة العربية
We evaluate the contribution to $N_{rm eff}$ of the extra sterile states in low-scale Type I seesaw models (with three extra sterile states). We explore the full parameter space and find that at least two of the heavy states always reach thermalisation in the Early Universe, while the third one might not thermalise provided the lightest neutrino mass is below ${mathcal O}(10^{-3}$eV). Constraints from cosmology therefore severely restrict the spectra of heavy states in the range 1eV- 100 MeV. The implications for neutrinoless double beta decay are also discussed.
If neutrinos are Dirac particles the existence of light right-handed neutrinos $ u_{R}$ is implied. Those would contribute to the effective number of relativistic neutrino species $N_{{rm eff}}$ in the early Universe. With pure standard model interac
We discuss Dirac neutrinos whose right-handed component $ u_R$ has new interactions that may lead to a measurable contribution to the effective number of relativistic neutrino species $N_{rm eff}$. We aim at a model-independent and comprehensive stud
A new U(1) gauge symmetry is the simplest extension of the Standard Model and has various theoretical and phenomenological motivations. In this paper, we study the cosmological constraint on the MeV scale dark photon. After the neutrino decoupling er
We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, $N_{rm eff}^{rm SM}$, that quantifies the cosmological neutrino-to-photon energy densities. The calculation takes into account neut
UHECR may be either nucleons or nuclei; in the latter case the Lightest Nuclei, as He, Li, Be, explains at best the absence of Virgo signals and the crowding of events around Cen-A bent by galactic magnetic fields. This model fit the observed nuclear