ترغب بنشر مسار تعليمي؟ اضغط هنا

Restitution of the K and F Components of the Solar Corona from LASCO-C2 Images over 24 Years [1996--2019]

167   0   0.0 ( 0 )
 نشر من قبل Philippe Lamy L
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Antoine Llebaria




اسأل ChatGPT حول البحث

We present a photometrically accurate restitution of the K and F coronae from white-light images obtained over 24 Years [1996--2019] by the Large-Angle Spectrometric COronagraph LASCO-C2 onboard the Solar and Heliospheric Observatory (SOHO). The procedure starts with the data set coming from the polarimetric separation of images of 512 x 512 pixels in which the F-corona and the instrumental stray light are entangled. Disentangling these components proceeds in three stages, each composed of several steps. Stage 1 establishes the distinct variations of the radiance of these components with the Sun--SOHO distance and generate a new data set of median images calculated for each Carrington rotation. Stage 2 achieves the restitution of a set of 36 stray light images reflecting its temporal variation and the periodic rolls of SOHO which started in 2003. Stage 3 achieves the restitution of the F-corona and a time series of daily images is generated. These results allowed us processing the whole set of routine LASCO-C2 images of 1024 x 1024 pixels (approximately 626000 images) and producing calibrated, high resolution images of the K-corona. We extend our past conclusions that the temporal variation of the integrated radiance of the K-corona tracks the solar activity over two solar cycles 23 and 24 and that it is highly correlated with the temporal variation of the total magnetic field. The behaviours of the integrated radiance during the last few years of the declining phases of solar cycles 23 and 24 are remarkably similar, reaching the same floor level and leading to a duration of 11.0 year for the latter cycle, in agreement with the sunspot determination.

قيم البحث

اقرأ أيضاً

142 - Philippe Lamy 2020
We present an in-depth characterization of the polarimetric channel of the Large-Angle Spectrometric COronagraph LASCO-C2 onboard the Solar and Heliospheric Observatory (SoHO). The polarimetric analysis of the white-light images makes use of polarize d sequences composed of three images obtained though three polarizers oriented at +60{deg}, 0{deg} and -60{deg}, complemented by a neighboring unpolarized image, and relies on the formalism of Mueller. The Mueller matrix characterizing the C2 instrument was obtained through extensive ground-based calibrations of the optical components and global laboratory tests. Additional critical corrections were derived from in-flight tests relying prominently on roll sequences and on consistency criteria, mainly the tangential direction of polarization. Our final results encompass the characterization of the polarization of the white-light corona, of its polarized radiance, of the two-dimensional electron density, and of the K-corona over two solar cycles. They are in excellent agreement with measurements obtained at several solar eclipses except for slight discrepancies affecting the innermost part of the C2 field-of-view, probably resulting from an imperfect removal of the bright diffraction fringe surrounding the occulter.
305 - Philippe Lamy 2020
We present an in-depth characterization of the polarimetric channel of the Large-Angle Spectrometric COronagraph/LASCO-C3 onboard SOHO. The polarimetric analysis of the white-light images makes use of polarized sequences composed of three images obta ined through three polarizers oriented at +60$^circ$, 0$^circ$, and -60$^circ$, complemented by a neighboring unpolarized image. However, the degradation of the 0$^circ$ polarizer noticed in 1999 compelled us to reconstruct the corresponding images from the other ones thereafter. The analysis closely follows the method developed for LASCO-C2 (Lamy, et al. Solar Physics 295, 89, 2020 and arXiv:2001.05925) and implements the formalism of Mueller, albeit with additional difficulties notably the presence of a non-axially symmetric component of stray light. Critical corrections were derived from a SOHO roll sequence and from consistency criteria (e.g., the tangential direction of polarization). The quasi-uninterrupted photopolarimetric analysis of the outer corona over two complete Solar Cycles 23 and 24 was successfully achieved and our final results encompass the characterization of its polarization, of its polarized radiance, of the two-dimensional electron density, and of the K-corona. Comparison between the C3 and C2 results where their field of view overlaps shows an overall agreement. The C3 results are further in agreement with those of eclipses and radio ranging measurements to an elongation of about 10 solar radii but tend to diverge further out. Whereas the coronal polarization out to 20 solar radii is still highly correlated with the temporal variation of the total magnetic field, this divergence probably results from the increasing polarization of the F-corona.
Total solar eclipses (TSEs) provide a unique opportunity to quantify the properties of the K-corona (electrons), F-corona (dust) and E-corona (ions) continuously from the solar surface out to a few solar radii. We apply a novel inversion method to se parate emission from the K- and F-corona continua using unpolarized total brightness (tB) observations from five 0.5 nm bandpasses acquired during the 2019 July 2 TSE between 529.5 nm and 788.4 nm. The wavelength dependence relative to the photosphere (i.e., color) of the F-corona itself is used to infer the tB of the K- and F-corona for each line-of-sight. We compare our K-corona emission results with the Mauna Loa Solar Observatory (MLSO) K-Cor polarized brightness (pB) observations from the day of the eclipse, and the forward modeled K-corona intensity from the Predictive Science Inc. (PSI) Magnetohydrodynamic (MHD) model prediction. Our results are generally consistent with previous work and match both the MLSO data and PSI-MHD predictions quite well, supporting the validity of our approach and of the PSI-MHD model. However, we find that the tB of the F-corona is higher than expected in the low corona, perhaps indicating that the F-corona is slightly polarized -- challenging the common assumption that the F-corona is entirely unpolarized.
We developed a new technique for registration of the far solar corona from ground-based observations at distances comparable to those obtained from space coronagraphs. It makes possible visualization of fine details of studied objects invisible by na ked eye. Here we demonstrate that streamers of the electron corona sometimes punch the dust corona and that the shape of the dust corona may vary with time. We obtained several experimental evidences that the far coronal streamers (observed directly only from the space or stratosphere) emit only in discrete regions of the visible spectrum like resonance fluorescence of molecules and ions in comets. We found that interaction of the coronal streamers with the dust corona can produce molecules and radicals, which are known to cause the resonance fluorescence in comets.
The purpose of this paper is to analyze the variation in the line width with height in the inner corona (region above 1.1 Rsun), by using the spectral data from LASCO-C1 aboard SOHO. We used data acquired at activity minimum (August - October 1996) a nd during the ascending phase of the solar cycle (March 1998). Series of images acquired at different wavelengths across the Fe X 637.6 nm (red) and Fe XIV 530.3 nm (green) coronal lines by LASCO-C1 allowed us to build radiance and width maps of the off-limb solar corona. In 1996, the line width of Fe XIV was roughly constant or increased with height up to around 1.3 Rsun and then it decreased. The Fe X line width increased with height up to the point where the spectra were too noisy to allow line width measurements (around 1.3 Rsun). Fe X showed higher effective temperatures as compared with Fe XIV. In 1998 the line width of Fe XIV was roughly constant with height above the limb (no Fe X data available).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا