ﻻ يوجد ملخص باللغة العربية
As a model to provide a hands-on, elementary understanding of chaotic dynamics in dimension 3, we introduce a $C^2$-open set of diffeomorphisms of whose cross sections are Cantor sets; the intersection of the unstable and stable sets contains a fractal set of Hausdorff dimension nearly $1$. Our proof employs the thicknesses of Cantor sets.
We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.
In this paper, we consider the renormalization operator $mathcal R$ for multimodal maps. We prove the renormalization operator $mathcal R$ is a self-homeomorphism on any totally $mathcal R$-invariant set. As a corollary, we prove the existence of the
In this paper, we study the Hausdorff and the box dimensions of closed invariant subsets of the space of pointed trees, equipped with a pseudogroup action. This pseudogroup dynamical system can be regarded as a generalization of a shift space. We sho
We compute the Hausdorff dimension of limit sets generated by 3-dimensional self-affine mappings with diagonal matrices of the form A_{ijk}=Diag(a_{ijk}, b_{ij}, c_{i}), where 0<a_{ijk}le b_{ij}le c_i<1. By doing so we show that the variational principle for the dimension holds for this class.
A function which is transcendental and meromorphic in the plane has at least two singular values. On one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either