ترغب بنشر مسار تعليمي؟ اضغط هنا

Hausdorff dimension of escaping sets of meromorphic functions II

170   0   0.0 ( 0 )
 نشر من قبل Weiwei Cui
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A function which is transcendental and meromorphic in the plane has at least two singular values. On one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either $2$ or $1/2$. On the other hand, the Hausdorff dimension of escaping sets of Speiser functions can attain every number in $[0,2]$ (cf. cite{ac1}). In this paper, we show that number of singular values which is needed to attain every Hausdorff dimension of escaping sets is not more than $4$.



قيم البحث

اقرأ أيضاً

We show that for each $din (0,2]$ there exists a meromorphic function $f$ such that the inverse function of $f$ has three singularities and the Julia set of $f$ has Hausdorff dimension $d$.
233 - Weixiao Shen 2015
We show that the graph of the classical Weierstrass function $sum_{n=0}^infty lambda^n cos (2pi b^n x)$ has Hausdorff dimension $2+loglambda/log b$, for every integer $bge 2$ and every $lambdain (1/b,1)$. Replacing $cos(2pi x)$ by a general non-const ant $C^2$ periodic function, we obtain the same result under a further assumption that $lambda b$ is close to $1$.
We study the dynamics of meromorphic maps for a compact Kaehler manifold X. More precisely, we give a simple criterion that allows us to produce a measure of maximal entropy. We can apply this result to bound the Lyapunov exponents. Then, we study the particular case of a family of generic birational maps of P^k for which we construct the Green currents and the equilibrium measure. We use for that the theory of super-potentials. We show that the measure is mixing and gives no mass to pluripolar sets. Using the criterion we get that the measure is of maximal entropy. It implies finally that the measure is hyperbolic.
We prove that along any marked point the Green function of a meromorphic family of polynomials parameterized by the punctured unit disk explodes exponentially fast near the origin with a continuous error term.
173 - Nuno Luzia 2020
We compute the Hausdorff dimension of limit sets generated by 3-dimensional self-affine mappings with diagonal matrices of the form A_{ijk}=Diag(a_{ijk}, b_{ij}, c_{i}), where 0<a_{ijk}le b_{ij}le c_i<1. By doing so we show that the variational principle for the dimension holds for this class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا