ترغب بنشر مسار تعليمي؟ اضغط هنا

Young stellar population gradients in central cluster galaxies from NUV and optical spectroscopy

95   0   0.0 ( 0 )
 نشر من قبل N\\'uria Salvador-Rusi\\~nol
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Central cluster galaxies are the largest and most massive galaxies in the Universe. Although they host very old stellar populations, several studies found the existence of blue cores in some BCGs indicating ongoing star formation. We analyse VLT/X-Shooter stacked spectra of 6 nearby massive central galaxies with high central velocity dispersions ($sigma$>300 km/s) at different galactocentric distances. We quantify the young stellar population out to 4 kpc by fitting near-UV and optical absorption line indices with predictions of composite stellar populations modelled by an old and a young stellar component. We also use IMF-sensitive indices since these galaxies have been found to host a bottom-heavy IMF in their central regions. We derive negative young stellar populations gradients, with mass fractions of stars younger than 1 Gyr decreasing with galactocentric distance, from 0.70% within 0.8 kpc to zero beyond 2 kpc. We also measure the mass fraction in young stars for individual galaxies in the highest S/N central regions. All the galaxies have young components of less than one percent. Our results clearly suggest that the star formation in massive central cluster galaxies takes place in their galaxy cores (<2 kpc), which, with deeper gravitational potential wells, are capable of retaining more gas. Among the possible sources for the gas required to form these young stars, our results are consistent with an in-situ origin via stellar evolution, which is sufficient to produce the observed young stellar populations.



قيم البحث

اقرأ أيضاً

We present the stellar population and velocity dispersion gradients for a sample of 24 brightest cluster galaxies (BCGs) in the nearby Universe for which we have obtained high quality long-slit spectra at the Gemini telescopes. With the aim of studyi ng the possible connection between the formation of the BCGs and their host clusters, we explore the relations between the stellar population gradients and properties of the host clusters as well as the possible connections between the stellar population gradients and other properties of the galaxies. We find mean stellar population gradients (negative {Delta}[Z/H]/log r gradient of -0.285{pm}0.064; small positive {Delta}log (age)/log r gradient of 0.069{pm}0.049; and null {Delta}[E/Fe]/log r gradient of -0.008{pm}0.032) that are consistent with those of normal massive elliptical galaxies. However, we find a trend between metallicity gradients and velocity dispersion (with a negative slope of -1.616{pm}0.539) that is not found for the most massive ellipticals. Furthermore, we find trends between the metallicity gradients and K-band luminosities (with a slope of 0.173{pm}0.081) as well as the distance from the BCG to the X-ray peak of the host cluster (with a slope of -7.546{pm}2.752). The latter indicates a possible relation between the formation of the cluster and that of the central galaxy.
We analyse the spatially-resolved stellar populations of 9 local ($z<0.1$) Brightest Cluster Galaxies (BCGs) observed with VIMOS in IFU mode. Our sample is composed of 7 slow-rotating and 2 fast-rotating BCGs. We do not find a connection between stel lar kinematics and stellar populations in this small sample. The BCGs have shallow metallicity gradients (median $Delta$[Fe/H] $= -0.11pm0.1$), high central metallicities (median $[$Fe/H]$_{[alpha/Fe]=0} = 0.13pm0.07$), and a wide range of central ages (from 5 to 15 Gyr). We propose that the reason for this is diverse evolutionary paths in BCGs. 67 per cent of the sample (6/9) show $sim 7$ Gyr old central ages, which reflects an active accretion history, and 33 per cent of the sample (3/9) have central ages older than 11 Gyr, which suggest no star formation since $z=2$. The BCGs show similar central stellar populations and stellar population gradients to early-type galaxies of similar mass (M$_{dyn}> 10^{11.3}$M$_{odot}$) from the ATLAS$^{3D}$ survey (median [Z/H] $= 0.04pm0.07$, $Delta$[Z/H] $= -0.19pm0.1$). However, massive early-type galaxies from ATLAS$^{3D}$ have consistently old ages (median Age $=12.0pm3.8$Gyr). We also analyse the close massive companion galaxies of two of the BCGs. These galaxies have similar stellar populations to their respective BCGs.
126 - A.G. Bedregal 2011
We present absorption-line index gradients for a sample of S0 galaxies in the Fornax Cluster. The sample has been selected to span a wide range in galaxy mass, and the deep VLT-FORS2 spectroscopy allows us to explore the stellar populations all the w ay to the outer disk-dominated regions of these galaxies. We find that globally, in both bulges and disks, star formation ceased earliest in the most massive systems, as a further manifestation of downsizing. However, within many galaxies, we find an age gradient which indicates that star formation ended first in the outermost regions. Metallicity gradients, when detected, are always negative such that the galaxy centres are more metal-rich. This finding fits with a picture in which star formation continued in the central regions, with enriched material, after it had stopped in the outskirts. Age and metallicity gradients are correlated, suggesting that large differences in star formation history between the inner and outer parts of S0 galaxies yield large differences in their chemical enrichment. In agreement with previous results, we conclude that the radial variations in the stellar populations of S0 galaxies are compatible with the hypothesis that these galaxies are the descendants of spiral galaxies whose star formation has ceased. With the addition of radial gradient information, we are able to show that this shutdown of star formation occurred from the outside inward, with the later star formation in the central regions offering a plausible mechanism for enhancing the bulge light in these systems, as the transformation to more bulge-dominated S0 galaxies requires.
Bars in galaxies are thought to stimulate both inflow of material and radial mixing along them. Observational evidence for this mixing has been inconclusive so far however, limiting the evaluation of the impact of bars on galaxy evolution. We now use results from the MaNGA integral field spectroscopic survey to characterise radial stellar age and metallicity gradients along the bar and outside the bar in 128 strongly barred galaxies. We find that age and metallicity gradients are flatter in the barred regions of almost all barred galaxies when compared to corresponding disk regions at the same radii. Our results re-emphasize the key fact that by azimuthally averaging integral field spectroscopic data one loses important information from non-axisymmetric galaxy components such as bars and spiral arms. We interpret our results as observational evidence that bars are radially mixing material in galaxies of all stellar masses, and for all bar morphologies and evolutionary stages.
We present results from a pilot study of radial stellar population trends in early-type galaxies using the VLT VIMOS integral field unit (IFU). We observe twelve galaxies in the cluster Abell 3389 (z~0.027). For each galaxy, we measure 22 line-streng th indices in multiple radial bins out to at least the effective radius. We derive stellar population parameters using a grid inversion technique, and calculate the radial gradients in age, metallcity and alpha-abundance. Generally, the galaxies in our sample have flat radial trends in age and [alpha/Fe], but negative gradients in [Z/H] (-0.20 +/- 0.05 dex). Combining our targets with two similar, long-slit studies to increase sample size, we find that the gradients are not correlated with the central velocity dispersion or K-band luminosity (both proxies for galaxy mass). However, we find that the age and metallicity gradients are both anti-correlated with their respective central values (to > 4 sigma), such that galaxies with young cores have steeper positive age gradients, and those with metal-rich centres have strong negative [Z/H] gradients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا