ﻻ يوجد ملخص باللغة العربية
We present absorption-line index gradients for a sample of S0 galaxies in the Fornax Cluster. The sample has been selected to span a wide range in galaxy mass, and the deep VLT-FORS2 spectroscopy allows us to explore the stellar populations all the way to the outer disk-dominated regions of these galaxies. We find that globally, in both bulges and disks, star formation ceased earliest in the most massive systems, as a further manifestation of downsizing. However, within many galaxies, we find an age gradient which indicates that star formation ended first in the outermost regions. Metallicity gradients, when detected, are always negative such that the galaxy centres are more metal-rich. This finding fits with a picture in which star formation continued in the central regions, with enriched material, after it had stopped in the outskirts. Age and metallicity gradients are correlated, suggesting that large differences in star formation history between the inner and outer parts of S0 galaxies yield large differences in their chemical enrichment. In agreement with previous results, we conclude that the radial variations in the stellar populations of S0 galaxies are compatible with the hypothesis that these galaxies are the descendants of spiral galaxies whose star formation has ceased. With the addition of radial gradient information, we are able to show that this shutdown of star formation occurred from the outside inward, with the later star formation in the central regions offering a plausible mechanism for enhancing the bulge light in these systems, as the transformation to more bulge-dominated S0 galaxies requires.
We present the stellar population and velocity dispersion gradients for a sample of 24 brightest cluster galaxies (BCGs) in the nearby Universe for which we have obtained high quality long-slit spectra at the Gemini telescopes. With the aim of studyi
We present stellar population age and metallicity trends for a sample of 59 S0 galaxies based on optical SDSS and NIR J & H photometry. When combined with optical g and r passband imaging data from the SDSS archive and stellar population models, we o
We explore stellar population properties separately in the bulge and the disk of double-component cluster galaxies to shed light on the formation of lenticular galaxies in dense environments. We study eight low-redshift clusters from the Sydney-AAO M
Based on FORS2-VLT long-slit spectroscopy, the analysis of the central absorption line indices of 9 S0 galaxies in the Fornax Cluster is presented. Central indices correlate with central velocity dispersions as observed in ellipticals. However, the s
Central cluster galaxies are the largest and most massive galaxies in the Universe. Although they host very old stellar populations, several studies found the existence of blue cores in some BCGs indicating ongoing star formation. We analyse VLT/X-Sh