ﻻ يوجد ملخص باللغة العربية
The stability ofthe proportional--integral--derivative (PID)controlof temperature in the spark plasma sintering (SPS) process is investigated.ThePID regulationsof this process are tested fordifferent SPS toolingdimensions, physical parameters conditions,andareas of temperature control. It isshown thatthe PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps arestudied to revealpotential areas forhighlyefficientPID control.The convergence of the model and experiment indicatesthat even with non-optimal initial PIDcoefficients, it is possible to reduce the temperature regulation inaccuracy to less than 4K by positioning the temperature control location in highlyresponsiveareas revealed by the finite-element calculationsof the temperature spatial distribution.
A new flash (ultra-rapid) spark plasma sintering method applicable to various materials systems, regardless of their electrical resistivity, is developed. A number of powders ranging from metals to electrically insulative ceramics have been successfu
This work addresses the two great challenges of the spark plasma sintering (SPS) process: the sintering of complex shapes and the simultaneous production of multiple parts. A new controllable interface method is employed to concurrently consolidate t
An energy efficient spark plasma sintering method enabling the densification of large size samples assisted by very low electric current levels is developed. In this method, the electric current is concentrated in the graphite foils around the sample
This paper investigates the chattering and deadlock behaviors of the proportional-integral (PI) controller with an anti-windup (AW) limiter recommended by the IEEE Standard 421.5-2016. Depending on the simulation method, the controller may enter a ch
The 3 heating modes are utilized to make ZrN powders have 3 different levels of the electric current density at the same temperature during spark plasma sintering (SPS). The constitutive equation of sintering for SPS is applied to the experimental po