ترغب بنشر مسار تعليمي؟ اضغط هنا

Standardizing linguistic data: method and tools for annotating (pre-orthographic) French

109   0   0.0 ( 0 )
 نشر من قبل Simon Gabay
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Simon Gabay




اسأل ChatGPT حول البحث

With the development of big corpora of various periods, it becomes crucial to standardise linguistic annotation (e.g. lemmas, POS tags, morphological annotation) to increase the interoperability of the data produced, despite diachronic variations. In the present paper, we describe both methodologically (by proposing annotation principles) and technically (by creating the required training data and the relevant models) the production of a linguistic tagger for (early) modern French (16-18th c.), taking as much as possible into account already existing standards for contemporary and, especially, medieval French.



قيم البحث

اقرأ أيضاً

In this paper, we introduce FreSaDa, a French Satire Data Set, which is composed of 11,570 articles from the news domain. In order to avoid reporting unreasonably high accuracy rates due to the learning of characteristics specific to publication sour ces, we divided our samples into training, validation and test, such that the training publication sources are distinct from the validation and test publication sources. This gives rise to a cross-domain (cross-source) satire detection task. We employ two classification methods as baselines for our new data set, one based on low-level features (character n-grams) and one based on high-level features (average of CamemBERT word embeddings). As an additional contribution, we present an unsupervised domain adaptation method based on regarding the pairwise similarities (given by the dot product) between the training samples and the validation samples as features. By including these domain-specific features, we attain significant improvements for both character n-grams and CamemBERT embeddings.
We tackle the problem of identifying metaphors in text, treated as a sequence tagging task. The pre-trained word embeddings GloVe, ELMo and BERT have individually shown good performance on sequential metaphor identification. These embeddings are gene rated by different models, training targets and corpora, thus encoding different semantic and syntactic information. We show that leveraging GloVe, ELMo and feature-based BERT based on a multi-channel CNN and a Bidirectional LSTM model can significantly outperform any single word embedding method and the combination of the two embeddings. Incorporating linguistic features into our model can further improve model performance, yielding state-of-the-art performance on three public metaphor datasets. We also provide in-depth analysis on the effectiveness of leveraging multiple word embeddings, including analysing the spatial distribution of different embedding methods for metaphors and literals, and showing how well the embeddings complement each other in different genres and parts of speech.
The success of neural networks on a diverse set of NLP tasks has led researchers to question how much these networks actually ``know about natural language. Probes are a natural way of assessing this. When probing, a researcher chooses a linguistic t ask and trains a supervised model to predict annotations in that linguistic task from the networks learned representations. If the probe does well, the researcher may conclude that the representations encode knowledge related to the task. A commonly held belief is that using simpler models as probes is better; the logic is that simpler models will identify linguistic structure, but not learn the task itself. We propose an information-theoretic operationalization of probing as estimating mutual information that contradicts this received wisdom: one should always select the highest performing probe one can, even if it is more complex, since it will result in a tighter estimate, and thus reveal more of the linguistic information inherent in the representation. The experimental portion of our paper focuses on empirically estimating the mutual information between a linguistic property and BERT, comparing these estimates to several baselines. We evaluate on a set of ten typologically diverse languages often underrepresented in NLP research---plus English---totalling eleven languages.
All over the world and especially in Africa, researchers are putting efforts into building Neural Machine Translation (NMT) systems to help tackle the language barriers in Africa, a continent of over 2000 different languages. However, the low-resourc eness, diacritical, and tonal complexities of African languages are major issues being faced. The FFR project is a major step towards creating a robust translation model from Fon, a very low-resource and tonal language, to French, for research and public use. In this paper, we introduce FFR Dataset, a corpus of Fon-to-French translations, describe the diacritical encoding process, and introduce our FFR v1.1 model, trained on the dataset. The dataset and model are made publicly available at https://github.com/ bonaventuredossou/ffr-v1, to promote collaboration and reproducibility.
We introduce BlaBla, an open-source Python library for extracting linguistic features with proven clinical relevance to neurological and psychiatric diseases across many languages. BlaBla is a unifying framework for accelerating and simplifying clini cal linguistic research. The library is built on state-of-the-art NLP frameworks and supports multithreaded/GPU-enabled feature extraction via both native Python calls and a command line interface. We describe BlaBlas architecture and clinical validation of its features across 12 diseases. We further demonstrate the application of BlaBla to a task visualizing and classifying language disorders in three languages on real clinical data from the AphasiaBank dataset. We make the codebase freely available to researchers with the hope of providing a consistent, well-validated foundation for the next generation of clinical linguistic research.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا