ﻻ يوجد ملخص باللغة العربية
We study an imbibition problem for porous media. When a wetted layer is above a dry medium, gravity leads to the propagation of the water downwards into the medium. In experiments, the occurrence of fingers was observed, a phenomenon that can be described with models that include hysteresis. In the present paper, we describe a single finger in a moving frame and set up a free boundary problem to describe the shape and the motion of one finger that propagates with a constant speed. We show the existence of solutions to the travelling wave problem and investigate the system numerically.
Porous media with hierarchical structures are commonly encountered in both natural and synthetic materials, e.g., fractured rock formations, porous electrodes and fibrous materials, which generally consist of two or more distinguishable levels of por
In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are usually treated separately in literature. To study complex flows when all three regimes may be prese
We investigate the presence of soliton solutions in some classes of nonlinear partial differential equations, namely generalized Korteweg-de Vries-Burgers, Korteveg-de Vries-Huxley, and Korteveg-de Vries-Burgers-Huxley equations, which combine effect
We study the Navier-Stokes-Darcy-Boussinesq system that models the thermal convection of a fluid overlying a saturated porous medium in a general decomposed domain. In both two and three spatial dimensions, we first prove the existence of global weak
We use a geometric approach to prove the existence of smooth travelling wave solutions of a nonlinear diffusion-reaction equation with logistic kinetics and a convex nonlinear diffusivity function which changes sign twice in our domain of interest. W