ترغب بنشر مسار تعليمي؟ اضغط هنا

Travelling wave solutions for gravity fingering in porous media flows

176   0   0.0 ( 0 )
 نشر من قبل Koondanibha Mitra PhD
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an imbibition problem for porous media. When a wetted layer is above a dry medium, gravity leads to the propagation of the water downwards into the medium. In experiments, the occurrence of fingers was observed, a phenomenon that can be described with models that include hysteresis. In the present paper, we describe a single finger in a moving frame and set up a free boundary problem to describe the shape and the motion of one finger that propagates with a constant speed. We show the existence of solutions to the travelling wave problem and investigate the system numerically.



قيم البحث

اقرأ أيضاً

188 - Si Suo , Mingchao Liu , 2019
Porous media with hierarchical structures are commonly encountered in both natural and synthetic materials, e.g., fractured rock formations, porous electrodes and fibrous materials, which generally consist of two or more distinguishable levels of por e structure with different characteristic lengths. The multiphase flow behaviours in hierarchical porous media have remained elusive. In this study, we investigate the influences of hierarchical structures in porous media on the dynamics of immiscible fingering during fluid-fluid displacement. By conducting a series of numerical simulations, we found that the immiscible fingering can be suppressed due to the existence of secondary porous structures. To characterise the fingering dynamics in hierarchical porous media, a phase diagram is constructed by introducing a scaling parameter, i.e., the ratio of time scales considering the combined effect of characteristic pore sizes and wettability. The findings present in this work provide a basis for further research on the application of hierarchical porous media for controlling immiscible fingerings.
In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are usually treated separately in literature. To study complex flows when all three regimes may be prese nt in different portions of a same domain, we use a single equation of motion to unify them. Several scenarios and models are then considered for slightly compressible fluids. A nonlinear parabolic equation for the pressure is derived, which is degenerate when the pressure gradient is either small or large. We estimate the pressure and its gradient for all time in terms of initial and boundary data. We also obtain their particular bounds for large time which depend on the asymptotic behavior of the boundary data but not on the initial one. Moreover, the continuous dependence of the solutions on initial and boundary data, and the structural stability for the equation are established.
We investigate the presence of soliton solutions in some classes of nonlinear partial differential equations, namely generalized Korteweg-de Vries-Burgers, Korteveg-de Vries-Huxley, and Korteveg-de Vries-Burgers-Huxley equations, which combine effect s of diffusion, dispersion, and nonlinearity. We emphasize the chiral behavior of the travelling solutions, whose velocities are determined by the parameters that define the equation. For some appropriate choices, we show that these equations can be mapped onto equations of motion of relativistic 1+1 dimensional phi^{4} and phi^{6} field theories of real scalar fields. We also study systems of two coupled nonlinear equations of the types mentioned.
66 - Xiaoming Wang , Hao Wu 2020
We study the Navier-Stokes-Darcy-Boussinesq system that models the thermal convection of a fluid overlying a saturated porous medium in a general decomposed domain. In both two and three spatial dimensions, we first prove the existence of global weak solutions to the initial boundary value problem subject to the Lions and Beavers-Joseph-Saffman-Jones interface conditions. The proof is based on a proper time-implicit discretization scheme combined with the Leray-Schauder principle and compactness arguments. Next, we establish a weak-strong uniqueness result such that a weak solution coincides with a strong solution emanating from the same initial data as long as the latter exists.
We use a geometric approach to prove the existence of smooth travelling wave solutions of a nonlinear diffusion-reaction equation with logistic kinetics and a convex nonlinear diffusivity function which changes sign twice in our domain of interest. W e determine the minimum wave speed, c*, and investigate its relation to the spectral stability of the travelling wave solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا