ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal growth and metallic ferromagnetism induced by electron doping in FeSb$_2$

80   0   0.0 ( 0 )
 نشر من قبل Mohamed Kassem M. A. Kassem
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to study the metallic ferromagnetism induced by electron doping in the narrow-gab semiconductor FeSb$_2$, single crystals of FeSb$_2$, Fe$_{1-x}$Co$_x$Sb$_2$ ($0 le x le 0.5$) and FeSb$_{2-y}$Te$_y$ ($0 le y le 0.4$), were grown by a simplified self-flux method. From powder x-ray diffraction (XRD) patterns, wavelength-dispersive x-ray spectroscopy (WDX) and x-ray Laue diffraction, pure and doped high-quality single crystals, within the selected solubility range, show only the orthorhombic $Pnnm$ structure of FeSb$_2$ with a monotonic change in lattice parameters with increasing the doping level. In consistence with the model of nearly ferromagnetic small-gap semiconductor, the energy gap of FeSb$_2$ Pauli paramagnet gradually collapses by electron doping before it closes at about $x$ or $y$ = 0.15 and subsequent itinerant electron anisotropic ferromagnetic states are observed with higher doping levels. A magnetic phase diagram is established and discussed in view of proposed theoretical scenarios.

قيم البحث

اقرأ أيضاً

Next-generation spintronic devices will benefit from low-dimensionality, ferromagnetism, and half-metallicity, possibly controlled by electric fields. We find these technologically-appealing features to be combined with an exotic microscopic origin o f magnetism in doped CdOHCl, a van der Waals material from which 2D layers may be exfoliated. By means of first principles simulations, we predict homogeneous hole-doping to give rise to $p$-band magnetism in both the bulk and monolayer phases and interpret our findings in terms of Stoner instability: as the Fermi level is tuned via hole-doping through singularities in the 2D-like density of states, ferromagnetism develops with large saturation magnetization of 1 $mu_B$ per hole, leading to a half-metallic behaviour for layer carrier densities of the order of 10$^{14}$ cm$^{-2}$. Furthermore, we put forward electrostatic doping as an additional handle to induce magnetism in monolayers and bilayers of CdOHCl. Upon application of critical electric fields perpendicular to atomically-thin-films (as low as 0.2 V/$A{deg}$ and 0.5 V/$A{deg}$ in the bilayer and monolayer case, respectively), we envisage the emergence of a magnetic half-metallic state. The different behaviour of monolayer vs bilayer systems, as well as an observed asymmetric response to positive and negative electric fields in bilayers, are interpreted in terms of intrinsic polarity of CdOHCl atomic stacks, a distinctive feature of the material. In perspective, given the experimentally accessible magnitude of critical fields in bilayer of CdOHCl, one can envisage $p$ band magnetism to be exploited in miniaturized spintronic devices.
Cobalt and silver co-doping has been undertaken in ZnO thin films grown by pulsed laser deposition in order to investigate the ferromagnetic properties in ZnO-based diluted magnetic materials and to understand the eventual relation between ferromagne tism and charge carriers. Hall transport measurements reveal that Ag doping up to 5% leads to a progressive compensation of the native n-type carriers. The magnetization curves show ferromagnetic contributions for all samples at both 5 K and room temperature, decreasing with increasing the Ag concentration. First principles modeling of the possible configurations of Co-Ag defects suggest the formation of nano-clusters around interstitial Co impurity as the origin of the ferromagnetism. The Ag co-doping results in a decrease of the total spin of these clusters and of the Curie temperature.
74 - Gul Rahman , Saad Sarwar 2015
Using first-principles calculations, the electronic and magnetic properties of orthorhombic BaFeO$_{3}$ (BFO) are investigated with local spin density approximation (LSDA). The calculations reveal that at the optimized lattice volume BFO has a lower energy in ferromagnetic state as compared with antiferromagnetic state. At the equilibrium volume, BFO shows metallic behavior, however, under a large tensile strain ($sim25%$), BFO shows half-metallic behavior consistent with the integer magnetic moment of $4.0mu_{rm{B}}$/fu mainly caused by the $t_{2g}$ and $e_{g}$ electrons of Fe. Including a Hubbard-like contribution $U$ (LSDA$+U$) on Fe $d$ states induced half-metallic bahvior without external strain, which indicates that $U$ can be used to tune the electronic structure of BFO. The magnetic moments remained robust against $sim 10%$ compressive and tensile strain. At large compressive (tensile) strain, the half-metallicity of BFO is mainly destroyed by the Fe-$d$ (O-$p$) electrons in agreement with the non-integer value of the magnetic moments of BFO.
Tuning of the electronic properties of pre-synthesized colloidal semiconductor nanocrystals (NCs) by doping plays a key role in the prospect of implementing them in printed electronics devices such as transistors, and photodetectors. While such impur ity doping reactions have already been introduced, the understanding of the doping process, the nature of interaction between the impurity and host atoms, and the conditions affecting the solubility limit of impurities in nanocrystals are still unclear. Here, we used a post-synthesis diffusion based doping reaction to introduce Ag impurities into InAs NCs. Optical absorption spectroscopy along with analytical inductively coupled plasma mass-spectroscopy (ICP-MS) were used to present a two stage doping model consisting of a doping region and a growth region, depending on the concentration of the impurities in the reaction vessel. X-ray absorption fine-structure (XAFS) spectroscopy was employed to determine the impurity location and correlate between the structural and electronic properties for different sizes of InAs NCs and dopant concentrations. The resulting structural model describes a heterogeneous system where the impurities initially dope the NC, by substituting for In atoms near the surface of the NC, until the solubility limit is reached, after which the rapid growth and formation of metallic structures are identified.
Superatomic crystals are composed of discrete modular clusters that emulate the role of atoms in traditional atomic solids$^{1-4}$. Owing to their unique hierarchical structures, these materials are promising candidates to host exotic phenomena, such as superconductivity and magnetism that can be revealed through doping$^{5-10}$. Low-dimensional superatomic crystals hold great promise as electronic components$^{11,12}$, enabling these properties to be applied to nanocircuits, but the impact of doping in such compounds remains unexplored. Here we report the electrical transport properties of Re$_6$Se$_8$Cl$_2$, a two-dimensional superatomic semiconductor$^{13,14}$. Using an in situ current annealing technique, we find that this compound can be n-doped through Cl dissociation, drastically altering the transport behaviour from semiconducting to metallic and giving rise to superconductivity below $sim$ 9 K. This work is the first example of superconductivity in a van der Waals (vdW) superatomic crystal; more broadly, it establishes a new chemical strategy to manipulate the electronic properties of vdW materials with labile ligands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا