ترغب بنشر مسار تعليمي؟ اضغط هنا

Half-metallic ferromagnetism in layered CdOHCl induced by hole doping

83   0   0.0 ( 0 )
 نشر من قبل Hrishit Banerjee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Next-generation spintronic devices will benefit from low-dimensionality, ferromagnetism, and half-metallicity, possibly controlled by electric fields. We find these technologically-appealing features to be combined with an exotic microscopic origin of magnetism in doped CdOHCl, a van der Waals material from which 2D layers may be exfoliated. By means of first principles simulations, we predict homogeneous hole-doping to give rise to $p$-band magnetism in both the bulk and monolayer phases and interpret our findings in terms of Stoner instability: as the Fermi level is tuned via hole-doping through singularities in the 2D-like density of states, ferromagnetism develops with large saturation magnetization of 1 $mu_B$ per hole, leading to a half-metallic behaviour for layer carrier densities of the order of 10$^{14}$ cm$^{-2}$. Furthermore, we put forward electrostatic doping as an additional handle to induce magnetism in monolayers and bilayers of CdOHCl. Upon application of critical electric fields perpendicular to atomically-thin-films (as low as 0.2 V/$A{deg}$ and 0.5 V/$A{deg}$ in the bilayer and monolayer case, respectively), we envisage the emergence of a magnetic half-metallic state. The different behaviour of monolayer vs bilayer systems, as well as an observed asymmetric response to positive and negative electric fields in bilayers, are interpreted in terms of intrinsic polarity of CdOHCl atomic stacks, a distinctive feature of the material. In perspective, given the experimentally accessible magnitude of critical fields in bilayer of CdOHCl, one can envisage $p$ band magnetism to be exploited in miniaturized spintronic devices.



قيم البحث

اقرأ أيضاً

In order to study the metallic ferromagnetism induced by electron doping in the narrow-gab semiconductor FeSb$_2$, single crystals of FeSb$_2$, Fe$_{1-x}$Co$_x$Sb$_2$ ($0 le x le 0.5$) and FeSb$_{2-y}$Te$_y$ ($0 le y le 0.4$), were grown by a simplif ied self-flux method. From powder x-ray diffraction (XRD) patterns, wavelength-dispersive x-ray spectroscopy (WDX) and x-ray Laue diffraction, pure and doped high-quality single crystals, within the selected solubility range, show only the orthorhombic $Pnnm$ structure of FeSb$_2$ with a monotonic change in lattice parameters with increasing the doping level. In consistence with the model of nearly ferromagnetic small-gap semiconductor, the energy gap of FeSb$_2$ Pauli paramagnet gradually collapses by electron doping before it closes at about $x$ or $y$ = 0.15 and subsequent itinerant electron anisotropic ferromagnetic states are observed with higher doping levels. A magnetic phase diagram is established and discussed in view of proposed theoretical scenarios.
Two-dimensional (2D) high-temperature ferromagnetic materials are important for spintronic application. Fortunately, a highly-air-stable PdSe$_2$ monolayer semiconductor has been made through exfoliation from the layered bulk material. It is very hig hly desirable to realize robust ferromagnetism, even half-metallic ferromagnetism (100% spin polarization), in such excellent nonmagnetic monolayer semiconductors. Here, the first-principles investigation shows that the PdSe$_2$ monolayer can be made to attain Stoner ferromagnetism with the maximal Curie temperature reaching to 800K, and the hole concentration threshold for ferromagnetism decreases with applied uniaxial stress. Furthermore, half-metallicity can be achieved in some hole concentration regions. For the strain of 10% (uniaxial tensile stress of 4.4 N/m), the monolayer can attain half-metallic ferromagnetism up to 150 K. The magnetic anisotropic energy is suitable to not only stabilizing the 2D ferromagnetism but also realizing fast magnetization reversal. The magnetization can be also controlled by applying a transverse uniaxial stress. The highly-air-stable PdSe$_2$ monolayer, with these advantages, should be promising for spintronic applications.
74 - Gul Rahman , Saad Sarwar 2015
Using first-principles calculations, the electronic and magnetic properties of orthorhombic BaFeO$_{3}$ (BFO) are investigated with local spin density approximation (LSDA). The calculations reveal that at the optimized lattice volume BFO has a lower energy in ferromagnetic state as compared with antiferromagnetic state. At the equilibrium volume, BFO shows metallic behavior, however, under a large tensile strain ($sim25%$), BFO shows half-metallic behavior consistent with the integer magnetic moment of $4.0mu_{rm{B}}$/fu mainly caused by the $t_{2g}$ and $e_{g}$ electrons of Fe. Including a Hubbard-like contribution $U$ (LSDA$+U$) on Fe $d$ states induced half-metallic bahvior without external strain, which indicates that $U$ can be used to tune the electronic structure of BFO. The magnetic moments remained robust against $sim 10%$ compressive and tensile strain. At large compressive (tensile) strain, the half-metallicity of BFO is mainly destroyed by the Fe-$d$ (O-$p$) electrons in agreement with the non-integer value of the magnetic moments of BFO.
Cobalt and silver co-doping has been undertaken in ZnO thin films grown by pulsed laser deposition in order to investigate the ferromagnetic properties in ZnO-based diluted magnetic materials and to understand the eventual relation between ferromagne tism and charge carriers. Hall transport measurements reveal that Ag doping up to 5% leads to a progressive compensation of the native n-type carriers. The magnetization curves show ferromagnetic contributions for all samples at both 5 K and room temperature, decreasing with increasing the Ag concentration. First principles modeling of the possible configurations of Co-Ag defects suggest the formation of nano-clusters around interstitial Co impurity as the origin of the ferromagnetism. The Ag co-doping results in a decrease of the total spin of these clusters and of the Curie temperature.
Two-dimensional (2D) intrinsic half-metallic materials are of great interest to explore the exciting physics and applications of nanoscale spintronic devices, but no such materials have been experimentally realized. Using first-principles calculation s based on density-functional theory (DFT), we predicted that single-layer MnAsS$_4$ was a 2D intrinsic ferromagnetic (FM) half-metal. The half-metallic spin gap for single-layer MnAsS$_4$ is about 1.46 eV, and it has a large spin splitting of about 0.49 eV in the conduction band. Monte Carlo simulations predicted the Curie temperature (emph{T}$_c$) was about 740 K. Moreover, Within the biaxial strain ranging from -5% to 5%, the FM half-metallic properties remain unchanged. Its ground-state with 100% spin-polarization ratio at Fermi level may be a promising candidate material for 2D spintronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا