ﻻ يوجد ملخص باللغة العربية
Ischemic heart disease (IHD), particularly in its chronic stable form, is a subtle pathology due to its silent behavior before developing in unstable angina, myocardial infarction or sudden cardiac death. Machine learning techniques applied to parameters extracted form heart rate variability (HRV) signal seem to be a valuable support in the early diagnosis of some cardiac diseases. However, so far, IHD patients were identified using Artificial Neural Networks (ANNs) applied to a limited number of HRV parameters and only to very few subjects. In this study, we used several linear and non-linear HRV parameters applied to ANNs, in order to confirm these results on a large cohort of 965 sample of subjects and to identify which features could discriminate IHD patients with high accuracy. By using principal component analysis and stepwise regression, we reduced the original 17 parameters to five, used as inputs, for a series of ANNs. The highest accuracy of 82% was achieved using meanRR, LFn, SD1, gender and age parameters and two hidden neurons.
The diagnosis of heart diseases is a difficult task generally addressed by an appropriate examination of patients clinical data. Recently, the use of heart rate variability (HRV) analysis as well as of some machine learning algorithms, has proved to
Diagnosing pre-existing heart diseases early in life is important as it helps prevent complications such as pulmonary hypertension, heart rhythm problems, blood clots, heart failure and sudden cardiac arrest. To identify such diseases, phonocardiogra
In this paper, we present a novel Image Fusion Model (IFM) for ECG heart-beat classification to overcome the weaknesses of existing machine learning techniques that rely either on manual feature extraction or direct utilization of 1D raw ECG signal.
The Fermi-LAT DR1 and DR2 4FGL catalogues feature more than 5000 gamma-ray sources of which about one fourth are not associated with already known objects, and approximately one third are associated with blazars of uncertain nature. We perform a thre
An intelligent optical performance monitor using multi-task learning based artificial neural network (MTL-ANN) is designed for simultaneous OSNR monitoring and modulation format identification (MFI). Signals amplitude histograms (AHs) after constant