ﻻ يوجد ملخص باللغة العربية
The Dzyaloshinskii-Moriya (DM) interaction, as well as symmetric anisotropic exchange, are important ingredients for stabilizing topologically non-trivial magnetic textures, such as, e.g., skyrmions, merons and hopfions. These types of textures are currently in focus from a fundamental science perspective and they are also discussed in the context of future spintronics information technology. While the theoretical understanding of the Heisenberg exchange interactions is well developed, it is still a challenge to access, from first principles theory, the DM interaction as well as the symmetric anisotropic exchange, which both require a fully-relativistic treatment of the electronic structure, in magnetic systems where substantial electron-electron correlations are present. Here, we present results of a theoretical framework which allows to compute these interactions in any given system and demonstrate its performance for several selected cases, for both bulk and low-dimensional systems. We address several representative cases, including the bulk systems CoPt and FePt, the B20 compounds MnSi and FeGe as well as the low-dimensional transition metal bilayers Co/Pt(111) and Mn/W(001). The effect of electron-electron correlations is analyzed using dynamical mean-field theory on the level of the spin-polarized $T$-matrix + fluctuating exchange (SPTF) approximation, as regards the strength and character of the isotropic (Heisenberg) and anisotropic (DM) interactions in relation to the underlying electronic structure. Our method can be combined with more advanced techniques for treating correlations, e.g., quantum Monte Carlo and exact diagonalization methods for the impurity solver of dynamical mean-field theory. We find that correlation-induced changes of the DM interaction can be rather significant, with up to five-fold modifications in the most distinctive case.
In this paper, we present a Kane-Mele model in the presence of magnetic field and next nearest neighbors hopping amplitudes for investigations the electronic and optical properties of monolayer Germanene. Specially, we address the dynamical conductiv
We investigate the interplay of spin-orbit coupling (SOC) and electronic correlations in Sr2RuO4 using dynamical mean-field theory. We find that SOC does not affect the correlation-induced renormalizations, which validates the Hunds metal picture of
The magneto-crystalline anisotropy (MCA) of (Ga,Mn)As films has been studied on the basis of ab-initio electronic structure theory by performing magnetic torque calculations. An appreciable contribution to the in-plane uniaxial anisotropy can be attr
We study the magnetic properties of the adatom systems on a semiconductor surface Si(111):{C,Si,Sn,Pb} - ($sqrt{3} times sqrt{3}$). On the basis of all-electron density functional theory calculations we construct effective low-energy models taking in
Characterizing non-local magnetic fluctuations in materials with strong electronic Coulomb interactions remains one of the major outstanding challenges of modern condensed matter theory. In this work we address the spatial symmetry and orbital struct