ﻻ يوجد ملخص باللغة العربية
Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect that might be used for high precision metrology and edge channel spintronics. In conjunction with superconductors, they could host chiral Majorana zero modes which are among the contenders for the realization of topological qubits. Recently, it was discovered that the stable 2+ state of Mn enables the formation of intrinsic magnetic topological insulators with A1B2C4 stoichiometry. However, the first representative, MnBi2Te4, is antiferromagnetic with 25 K Neel temperature and strongly n-doped. Here, we show that p-type MnSb2Te4, previously considered topologically trivial, is a ferromagnetic topological insulator in the case of a few percent of Mn excess. It shows (i) a ferromagnetic hysteresis with record high Curie temperature of 45-50 K, (ii) out-of-plane magnetic anisotropy and (iii) a two-dimensional Dirac cone with the Dirac point close to the Fermi level which features (iv) out-of-plane spin polarization as revealed by photoelectron spectroscopy and (v) a magnetically induced band gap that closes at the Curie temperature as demonstrated by scanning tunneling spectroscopy. Moreover, it displays (vi) a critical exponent of magnetization beta~1, indicating the vicinity of a quantum critical point. Ab initio band structure calculations reveal that the slight excess of Mn that substitutionally replaces Sb atoms provides the ferromagnetic interlayer coupling. Remaining deviations from the ferromagnetic order, likely related to this substitution, open the inverted bulk band gap and render MnSb2Te4 a robust topological insulator and new benchmark for magnetic topological insulators.
The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormal
We propose two-dimensional (2D) Ising-type ferromagnetic semiconductors TcSiTe3, TcGeSe3, and TcGeTe3 with high Curie temperatures around 200-0500 K. Owing to large spin-orbit couplings, the large magnetocrystalline anisotropy energy (MAE), large ano
Intrinsic magnetic topological insulators provide an ideal platform to achieve various exciting physical phenomena. However, this kind of materials and related research are still very rare. In this work, we reported the electronic and structural phas
We investigate the relationship between the Curie temperature TC and the carrier density p in the ferromagnetic semiconductor (Ga,Mn)As. Carrier densities are extracted from analysis of the Hall resistance at low temperatures and high magnetic fields
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostruct